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Abstract. Cerebral CT Perfusion (CTP) sequence imaging is a widely
used modality for stroke assessment. While high temporal resolution of
CT scans is crucial for accurate diagnosis, it correlates to increased radi-
ation exposure. A promising solution is to generate synthetic CT scans to
artificially enhance the temporal resolution of the sequence. We present
a versatile CTP sequence inpainting model based on a conditional dif-
fusion model, which can inpaint temporal gaps with synthetic scan to
a fine 1-second interval, agnostic to both the duration of the gap and
the sequence length. We achieve this by incorporating a carefully engi-
neered conditioning scheme that exploits the intrinsic patterns of time-
concentration dynamics. Our approach is much more flexible and clini-
cally relevant compared to existing interpolation methods that either (1)
lack such perfusion-specific guidances or (2) require all the known scans
in the sequence, thereby imposing constraints on the length and acquisi-
tion interval. Such flexibility allows our model to be effectively applied to
other tasks, such as repairing sequences with significant motion artifacts.
Our model can generate accurate and realistic CT scans to inpaint gaps
as wide as 8 seconds while achieving both perceptual quality and diagnos-
tic information comparable to the ground-truth 1-second resolution se-
quence. Extensive experiments demonstrate the superiority of our model
over prior arts in numerous metrics and clinical applicability. Our code is
available at https://github.com/baejustin/CTP_Inpainting_Diffusion.

Keywords: Diffusion model · CT Perfusion · Radiation reduction · Se-
quence inpainting.
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1 Introduction

Cerebral Computed Tomography Perfusion (CTP) is a widely used modality for
fast and cost-effective stroke diagnosis [3]. CTP involves a sequence of 3D CT
scans, where an acquisition interval exceeding 1 second could produce inaccu-
rate diagnostic results [11]. However, increasing the temporal resolution with
shorter intervals may result in prolonged radiation exposure. Conventional ap-
proaches to mitigate this risk are low-dose CT protocols that reduce the radiation
dosage of each scan while maintaining sufficient temporal resolution [1,16]. Yet,
they inevitably degrade the quality of individual scans, requiring follow-up post-
processing efforts often impractical due to the limited access to raw sinogram
data on commercial scanners, high computational demands [15], or scarcity of
paired datasets for learnable reconstruction. A more pragmatic solution for se-
quential imaging like CTP is to acquire the scans with adequate dosage in a
reduced temporal resolution and interpolate the sequence with synthetic scans.
This strategy also addresses the limitation of certain CT scanning protocols, such
as Cone-beam CT, that inherently cannot achieve a sufficiently fast acquisition
rate [14].

Several existing works have employed deep learning to address this challenge
in CTP [22,24]. They require an entire sequence with a fixed length and acquisi-
tion interval as input. This limits clinical applicability because (1) duration and
intervals may vary due to patient or hardware considerations, and (2) corruptions
in the known scans could compromise the interpolated scans. Meanwhile, recent
advancements in diffusion models demonstrated exceptional capabilities in nat-
ural and medical sequence interpolation tasks [2,6,12,20], surpassing Generative
Adversarial Networks (GANs) and Convolutional Neural Networks (CNNs) in
many applications and benchmarks. However, they primarily aim to enhance
the visual fluidity only between the adjacent conditioning frames, neglecting the
global, sequence-level dynamics crucial for accurate estimation of time-specific
concentration levels in CTP. This can be addressed by simply augmenting the
condition with even more known scans in the sequence, but this remedy is (1)
not readily scalable to longer sequences and (2) ineffective when other known
scans are corrupted.

To address the aforementioned issues, we present a novel and flexible CTP se-
quence inpainting framework using a 3D diffusion model. Our model only needs
two known scans before and after the target timepoint to generate a scan at
that timepoint. We indicate the temporal position of the target only within the
local window between the two reference scans, making our model agnostic to
both the length and the interval of the sequence. To include a more holistic
context beyond the local window, we avoid using any other known scans in the
sequence as conditions. Instead, we indicate the state of concentration changes
of the reference scans, which can be easily inferred from the pattern of time-
concentration curves inherent in all perfusion imaging. Our simple and effective
conditioning scheme allows our model to inpaint gaps of up to eight seconds
with accurate and coherent synthetic scans at a one-second interval. To further
demonstrate the clinical applicability of our model, we compute the perfusion
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parametric maps from the synthetic sequences interpolated using our model.
Results suggest that our model can be used to yield perfusion parameter maps
with comparable quality to those derived from the ground-truth high temporal
resolution sequence, while reducing the radiation exposure to as little as one-
eighth. We also showcase the flexibility of our model by successfully applying
it to an application of restoring a section of a CTP sequence corrupted by se-
vere motion artifacts with clean, synthetic scans. Extensive experiments show
the superior performance and clinical utility of our model in various temporal
resolution settings and applications.

2 Methodology

2.1 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) [10,19] are powerful genera-
tive models that learn to approximate the target data distribution through two
main phases: the forward diffusion phase (FD) and the reverse diffusion phase
(RD). In FD, the model formulates a Markov chain q with T iterations that
progressively corrupt real data x0 with Gaussian noise. Each iteration, defined
as q(xt|xt−1), applies noise to the data based on a variance schedule {βt}Tt=1:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

This variance schedule ensures that, after T steps, xT is approximately a sample
from a standard Gaussian distribution, xT ∼ N (0, I).

Meanwhile, RD aims to learn a generative process that can synthesize data
by reversing the forward diffusion chain. Since the true posterior p(xt−1|xt)
is intractable, RD approximates it with a parameterized Gaussian distribution
pθ(xt−1|xt) = N (xt−1;µθ(xt, t), Σt), where variance Σt is a function of t prede-
termined based on βt, and mean µθ(xt, t) is a function of t that can be learned
through a neural network parameterized by θ. Typically, timestep t is embedded
into a higher-dimensional vector via sinusoidal positional encoding and added to
the layers of the network [10].

Instead of directly predicting the denoised data µθ(xt, t), the network is
trained to predict the noise ϵθ(xt, t) added during the forward process [10]. This
prediction is then used to iteratively refine the estimate of the original data point
x0. The objective function for training the neural network θ is given by:

L(θ) = Ex0,ϵ∼N (0,I),t∼U(1,T )

[
∥ϵ− ϵθ(xt, t)∥2

]
, (2)

where t ∼ U(1, T ) indicates that t is uniformly sampled from all possible timesteps.

2.2 Condition Mining Attuned to Time-Concentration Dynamics

To generate the target scan xn, we condition the RD on two known scans, xA and
xB , from the same sequence that precedes and follows the timestamp of xn. We
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Fig. 1. We can always assign (xA,xB) pair to one of the above three scenarios based on
the mean tissue intensities. This only requires minimal knowledge of the other known
scans in the sequence.

Fig. 2. Conditioning scheme of our model during RD at timestep t.

also employ the temporal distances from xn to xA and xB , denoted dA ∈ Z+ and
dB ∈ Z+, to specify the temporal positioning of xn. Yet, CTP sequences exhibit
specific patterns in the change of contrast levels across the sequence [13], where
dA and dB alone cannot provide the global context beyond the local window. To
address this, we leverage the innate nature of the time-concentration mapping
in a perfusion sequence, characterized by an inflow (rising phase) and a washout
(falling phase) of the contrast agent [7, 13]. We categorize the selected xA and
xB pair into one of the three scenarios described in Figure 1 and incorporate it
into the condition. This can provide insight into the expected change in motion
within the specified local window, with respect to the global context. Combined
with the local distance information dA and dB , the amount and the direction of
the contrast change at a specific timepoint can be inferred.

Our versatile conditioning scheme permits any selection of xA and xB , as
long as the combined distance dA + dB does not exceed 8 seconds - the maxi-
mum interval our model is designed to handle. At the same time, our scheme
produces a large number of {xA,xB , dA, dB} combinations for a given target xn

during training, fostering the model to thoroughly learn the global patterns of
hemodynamics in a sequence. Overall, we minimize the following loss at each t
to train our denoising network ϕ:

L(ϕ) = Exn
0 ,ϵ∼N (0,I),t∼U(1,T ),2≤dA+dB≤8

[∥∥ϵ− ϵϕ(xn
t ,x

A,xB , d, S, t)
∥∥2] , (3)



Conditional Diffusion for Versatile 4D CTP Inpainting 5

where d denotes distance vector
[
dA, dB

]
and S is a one-hot vector of size 3 that

indicates the contrast change combinations of xA and xB .
At each iteration of RD, xA and xB are concatenated with xn

t to form an
input to ϕ. For d and S, we encode them via linear and class embedding lay-
ers, respectively, and then append them to the timestep embedding. This is a
more effective and economical conditioning strategy over the widely-used cross-
attention method [9, 18], given the low dimensionality of d and S.

3 Experiments

3.1 Datasets and Implementation Detail

Our dataset comprises 4D CTP sequence data from 551 patients: 103 from
ISLES2018 Challenge [4, 8], 115 from UniToBrain Dataset [17], and 333 from
our in-house cohort. All sequences are resampled to a consistent 1-second inter-
val, and individual CT scans are skull-stripped and windowed to 40 Hounsfield
Unit (HU) level and 80 HU width. We standardize the scans to a spatial size of
192×192 by brain-centered cropping and an axial height of 8 via slab separation
or axial zero-padding, as required. Sequences from 50 patients - 25 from the
in-house cohort and 25 from the two public datasets - are randomly selected for
hold-out testing.

During training, we randomly sample a condition set {xA,xB , dA, dB , S} for
every non-edge scan in the training sequences. In every iteration of the training
dataset, the same non-edge scan xn is paired with a different condition set. The
denoising neural network of our model follows a 3D residual UNet [5] based on
the original implementation of DDPM [10], with channel dimensions of 64, 64,
128, 128, 256, and 256 for each stage. Noise level β follows a linear schedule
from 1e-6 to 1e-2, with T=1500. We train the model for 600,000 iterations using
Adam optimizer. The batch size is set to 20 and the starting learning rate is set
to 1e-4, which is decayed by a factor of 10 after every 200,000 iterations.

3.2 Evaluation Criteria

In our test set, we generate three low-resolution sequences with acquisition in-
tervals of 2, 4, and 8 seconds by omitting the intermediate scans. Missing scans
are reconstructed to a 1-second interval and thoroughly compared to the ground
truth scans using the Structural Similarity Metric (SSIM), Peak Signal-to-Noise
Ratio (PSNR), Fréchet Inception Distance (FID), and Learned Perceptual Image
Patch Similarity (LPIPS), with the latter two metrics assessed on axial slices.
To evaluate our model in a more clinically relevant context, we implement the
standard deconvolution algorithm [7,23] commonly used in commercial software
packages for computing perfusion parameter maps (PPMs), which provide key
indicators crucial for stroke assessment. The algorithm derives the hemodynamic
parameters by deconvolving the time-concentration curves (TCC) of each voxel
with the TCC of the main feeding artery [7]. We compute three types of PPMs
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— Time-to-max (Tmax), Cerebral Blood Flow (CBF), and Cerebral Blood Vol-
ume (CBV) — from both the synthetic and the corresponding ground-truth
sequences. Mean absolute error (MAE), root-mean-squared error (RMSE), and
Lin’s concordance correlation coefficient (CCC) are used to evaluate the similar-
ity of the PPMs. Only the 25 in-house test sequences with manually annotated
artery locations available are used for this follow-up experiment.

We compare our model with three recent state-of-the-art (SOTA) methods:
(1) CNN-based CTP temporal upsampling model [24]; (2) MPVF [21], 4D med-
ical sequence inpainting model using pyramid voxel flow; and (3) MCVD [20],
diffusion-based 2D natural video interpolation model. Note that for MCVD,
scans are generated slice-by-slice.

3.3 Result Analysis

Table 1 reports the reconstruction quality of the scans inpainted from low tempo-
ral resolution sequences. Our model consistently outperforms all non-diffusion-
based methods across evaluated metrics, particularly in FID scores. While our
advantage over MCVD is less pronounced in the simpler 2-seconds interval, it
becomes more significant with longer intervals, which we attribute to our model’s
adept use of both local and global hemodynamic contexts to bridge the gap.

Table 1. Quantitative performance on CT scan synthesis. * and † indicate significant
differences from our method with p < 0.001 and p < 0.05, respectively, by paired t-test.

Acquisition
Interval

Methods SSIM↑ PSNR↑ LPIPS↓ FID↓

2s MCVD [20] 99.321 43.028* 0.0021 0.0004
MPVF [21] 98.919* 41.138* 0.0116* 0.1446
CNN [24] 99.105* 41.003* 0.0030* 0.0033
Ours 99.309 43.323 0.0021 0.0002

4s MCVD [20] 97.582 36.991* 0.0071* 0.0018
MPVF [21] 96.537* 35.878* 0.0173* 0.1285
CNN [24] 97.324* 37.038 0.0083* 0.0125
Ours 97.601 37.204 0.0067 0.0016

8s MCVD [20] 91.434† 31.843* 0.0188* 0.0012
MPVF [21] 91.317† 31.782* 0.0292* 0.3133
CNN [24] 90.261* 31.099* 0.0388* 0.2975
Ours 91.527 32.002 0.0184 0.0009

Meanwhile, the utility of interpolated CTP sequences hinges on their abil-
ity to yield accurate PPMs that align with those derived from high temporal
resolution counterparts. This requires not only high-quality synthesis of individ-
ual scans but also precise replication of hemodynamics throughout the sequence,
where all synthetic scans must accurately reflect the expected concentration level
at every timepoint. The challenge intensifies with larger temporal gaps due to
reduced contextual data for estimating the concentration. As reported in Table
2, our model outperforms competing methods in simulating the reference PPMs,
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Table 2. Quantitative evaluation of PPMs from interpolated synthetic sequences.“Low
Res.” indicates baseline PPMs derived without interpolation. Non-parametric signed-
rank test is applied to account for small sample size. * and † indicate significant differ-
ences from our method with p < 0.001 and p < 0.05, respectively.

Acquisition
Interval Methods

Tmax (second) CBF (mL/100g/min) CBV (mL/100g)
RMSE↓ MAE↓ CCC↑ RMSE↓ MAE↓ CCC↑ RMSE↓ MAE↓ CCC↑

2s Low Res. 1.576* 0.382* 0.9365* 13.783* 6.476* 0.9963* 4.370* 2.114* 0.9934*
MCVD [20] 1.101 0.127 0.9720 5.602 2.396 0.9995 1.498 0.647 0.9991
MPVF [21] 1.259* 0.166* 0.9616* 10.622* 5.194* 0.9982* 2.286* 1.069* 0.9982*
CNN [24] 1.158* 0.176* 0.9691* 4.981 2.073 0.9995 1.482† 0.645* 0.9992†
Ours 1.008 0.101 0.9762 5.044 2.072 0.9996 1.330 0.552 0.9993

4s Low Res. 2.689* 0.883* 0.8338* 38.567* 18.937* 0.9794* 13.484* 6.896* 0.9547*
MCVD [20] 1.755† 0.311† 0.9299* 15.082† 6.948† 0.9968 4.115* 1.886* 0.9949†
MPVF [21] 1.894* 0.375* 0.9145* 19.915* 9.685* 0.9945* 4.571* 2.150* 0.9938†
CNN [24] 1.743† 0.367* 0.9333 15.046 7.125† 0.9967 3.853 1.748 0.9953
Ours 1.724 0.297 0.9322 14.436 6.531 0.9968 3.838 1.747 0.9954

8s Low Res. 4.464* 1.927* 0.6134* 70.998* 35.024* 0.9328* 26.901* 14.161* 0.8379*
MCVD [20] 2.641* 0.710* 0.8369* 37.346* 17.539* 0.9817* 10.761* 5.083* 0.9669*
MPVF [21] 2.692* 0.743* 0.8328* 42.220* 20.394* 0.9760* 12.178* 5.880* 0.9567*
CNN [24] 3.279* 1.077* 0.7880* 56.573* 28.441* 0.9526* 14.070* 6.834* 0.9421*
Ours 2.547 0.663 0.8503 34.703 16.138 0.9844 9.921 4.639 0.9722

Fig. 3. Left: Tmax maps derived from different temporal resolution settings, with the
top row presenting non-interpolated baselines. Right: Arterial TCCs of the interpo-
lated 8-seconds interval sequences and the ground-truth 1-second interval sequence.
See supplementary material for other types of PPMs. (Color figure online)
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Fig. 4. Left: CT scans and corresponding Tmax maps, before and after the motion
correction using our model. Right: Arterial TCCs used to compute the Tmax maps,
before and after the correction. (Color figure online)

especially by a significant margin under the most demanding 8-seconds tempo-
ral resolution setting. This underscores our model’s superior ability to harness
contextual information, translating into improved clinical applicability.

Figure 3 presents qualitative visuals of the presented methods under differ-
ent temporal resolution settings. Under the most challenging 8-seconds resolu-
tion setting, Tmax from our method’s interpolated sequence demonstrates the
highest visual alignment with the Tmax from the ground truth 1-second set-
ting. Notably, the CNN method fails to accurately replicate the arterial TCC,
a critical prerequisite for achieving reliable PPMs. Other comparing methods
reproduce the arterial TCCs with reasonable accuracy but struggle to capture
nuanced contrast changes throughout the tissue. This is particularly noticeable
in the Tmax from the most naïve cubic interpolation method, which barely im-
proves upon the non-interpolated baseline. Our model stands out by accurately
reflecting both arterial TCCs and tissue contrast changes, ensuring precise PPM
derivation.

Application to Motion Correction Our model’s key strength is its versa-
tility. It can inpaint temporal gaps of arbitrary duration, agnostic to the total
length of the sequence, and does not require comprehensive knowledge of the en-
tire sequence. This enables our model to adaptively perform motion correction
by replacing one or more corrupted sections in the sequence with clean, synthetic
counterparts. Unlike the traditional alternatives such as registration or rotation,
our model is entirely agnostic to the magnitude of the artifact, yielding valuable
clinical utility. In Figure 4, the first row example clearly shows artifacts in both
the CT scan and the arterial TCC. After correction, the sequence can simulate
a plausible arterial TCC and a PPM with clearer diagnostic information. Even
when the artifacts in the CT scan are subtle (2nd row), our model can effectively
remove the abnormalities and enhance the diagnostic information.
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4 Conclusion

In this work, we present a versatile CTP sequence inpainting model based on
conditional diffusion. Our model grants exceptional flexibility and reconstruction
accuracy through an intuitive conditioning scheme based on time-concentration
patterns in CTP. Thorough evaluation demonstrates the competence of our
model in both generation quality and clinical applicability compared to existing
SOTA methods.
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