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Abstract. Predicting the likelihood of survival is of paramount im-
portance for individuals diagnosed with cancer as it provides invalu-
able information regarding prognosis at an early stage. This knowledge
enables the formulation of effective treatment plans that lead to im-
proved patient outcomes. In the past few years, deep learning mod-
els have provided a feasible solution for assessing medical images, elec-
tronic health records, and genomic data to estimate cancer risk scores.
However, these models often fall short of their potential because they
struggle to learn regression-aware feature representations. In this study,
we propose Survival Rank-N-Contrast (SurvRNC) method, which intro-
duces a loss function as a regularizer to obtain an ordered represen-
tation based on the survival times. This function can handle censored
data and can be incorporated into any survival model to ensure that
the learned representation is ordinal. The model was extensively eval-
uated on a HEad & NeCK TumOR (HECKTOR) segmentation and
the outcome-prediction task dataset. We demonstrate that using the
SurvRNC method for training can achieve higher performance on dif-
ferent deep survival models. Additionally, it outperforms state-of-the-art
methods by 3.6% on the concordance index. The code is publicly avail-
able at https://github.com/numanai/SurvRNC.
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1 Introduction

Survival prediction is fundamental and pervasive in medical care for various
diseases, including cardiovascular, chronic respiratory, neurological diseases, and
different types of cancer. With regard to cancer, the World Health Organization
anticipated that in the year 2023, an estimated 20 million individuals would
be diagnosed with cancer, resulting in approximately 10 million fatalities. This
number is anticipated to increase to approximately 30 million new cases by
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2040 [1]. Survival prediction aids in treatment planning, patient staging, and
monitoring, which results in better cancer patient care [15]. In the era of precision
medicine, data-driven techniques and deep learning models enable healthcare
professionals to make precise predictions of future outcomes through survival
models.

The main idea of survival modeling is the use of regression analysis, a sta-
tistical method that models the relationship between the continuous outcome
of interest (i.e., risk score) and its covariates (i.e., patient data). However, sur-
vival prediction is a complex task influenced by various factors, including disease
physiology, clinical demographics, and treatment plans. Furthermore, incomplete
survival data owing to right-censored samples, in which the exact event occur-
rence time is missing, pose a challenge. This can occur when patients are lost
to follow-up, or when an event is not observed within a limited follow-up time.
Nevertheless, data from censored patients still holds valuable information, as
these patients did not experience the event within a specific period and may
have experienced it later. Therefore, utilizing both uncensored and censored pa-
tient data is crucial to maximize the use of limited available data in survival
prediction models [4].

Substantial research has focused on improving the performance of survival
models and incorporating censored patient data. The Cox proportional hazard
(CoxPH) regression model [6] is a widely used statistical technique for analyzing
survival data with censored patients. However, it has limitations in that it as-
sumes linear relationships between covariates, survival probability, and constant
hazard ratios over time. An alternative to CoxPH is the multi-task logistic regres-
sion (MTLR) model [26], which is more flexible and can model non-proportional
hazards and the complex relationships between covariates and survival outcomes.
Additionally, survival support vector machines [20] and random survival forests
[11] are two other methods that can be used to model nonlinear, complex rela-
tionships between covariates and future outcomes.

In the oncology context, survival models must distill complex high-dimensional
multimodal data, including imaging (e.g., computed tomography (CT) or positron
emission tomography (PET) scans), clinical (e.g., electronic health records (EHR)),
and molecular data (e.g., genomics), into actionable insights. Therefore, it is
necessary to employ deep learning to extract representations across the differ-
ent input views in a survival prediction framework. Deep survival models use
convolutional neural networks (CNNs) or vision transformers (ViTs) to extract
features from images and fuse them with EHR before feeding them to a survival
prediction model. Various studies have used deep learning-based survival pre-
diction models for the prognosis of oral [12], ovarian [28], glioma [5], gastric [9],
breast [18], and prostate [7] cancers. Recently, the prognosis of lung cancer was
investigated through the use of image-based features extracted via deep learn-
ing classification or segmentation models [24]. In another context, breast cancer
prognosis has been attempted in several studies, where deep-learning-aided fea-
ture extraction is used, leveraging genomic data and pathological images [25],
RNA-seq data [10], and mammograms [3]. Recently, there has been a lot of in-
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terest in modeling the future outcomes of patients with Head and Neck (H&N)
cancer, which is one of the most common cancers worldwide. In [16], an X-shape
hybrid transformer network (XSurv) was proposed, which consists of merging
an encoder for multimodal data fusion and a decoder for survival prediction. In
another work [23], a transformer-based implementation called TMSS provides
an end-to-end solution that takes CT and PET scans, as well as EHR data, and
not only predicts the survival probability but also segments the H&N tumor.

However, the existing deep learning-based survival prediction methods solely
target an end-to-end solution for future outcome predictions without explicitly
focusing on learning regression-aware feature representations. We argue that
by not making this consideration (i.e., constraining the learned representation
properly), deep learning methods underperform as they remain oblivious to the
ordinal nature of the problem. In recent work [27], an extension of the con-
trastive loss function called Rank-N-Contrast (RNC) was introduced to learn a
regression-aware representation by contrasting samples against each other based
on their rankings in the target space. However, this cannot be applied directly
to a survival prediction problem due to the presence of censored patients in the
dataset.

In this study, we propose the Survival Rank-N-Contrast (SurvRNC) method,
a novel approach that incorporates a unique loss function to learn ordinal fea-
ture representations based on survival times. This function is capable of han-
dling censored data and can be incorporated into any survival model to ensure
the learned representation is ordinal. Our research demonstrates that SurvRNC
enhances the performance of various deep learning models, including state-of-
the-art DeepMTLR [8] and DeepHit [14], for complex tasks such as predicting
survival rates in head and neck cancer cases using multimodal datasets.

2 Methodology

2.1 Problem Statement

We aim to develop a deep neural network that utilizes multimodal data, specif-
ically CT/PET scans and EHR, to predict patient survival through learning
an ordered feature representation. The dataset for this task, denoted as D =
[P1,P2, ...,PN ], consists of N patients, where a patient Pj = (Xj , ej , T j), com-
prises patient features Xj , event indicator ej (with e = 0 and e = 1 indicating
censored and uncensored patients, respectively), and time-to-event T j . The ob-
jective is to train the network to predict the survival probability of a patient
beyond a certain time t, denoted as S(t|X) = P (T > t, e | X), which corre-
sponds to the patient’s survival function.

The deep neural network shown in Figure 1 consists of two components:
a feature encoder, denoted by fθ(X) → v ∈ Rdemb , and a survival predictor
sϕ(v) → u ∈ Rdt . The feature encoder fθ takes as input X = [ximg, xehr],
where ximg represents CT/PET scans and xehr represents the electronic health
record data of a patient. The feature encoder outputs representations v in the
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Fig. 1. An illustration of the deep neural network architecture trained using its native
loss LPrognosis and LSurvRNC .

embedding space. These feature representations v are then passed to the survival
predictor sϕ to predict u, which can be a survival or risk score depending on
the problem formulation. For a patient, the survival function, S(t|X), can be
estimated using the output u and function g(·). To encourage the model to learn
regression-aware feature representations v, they must be appropriately ordered
based on the censoring information e and time-to-event T labels.

2.2 Survival Rank-N-Contrast Loss

In order to learn an ordered feature representation, we propose Surv Rank-N-
Contrast, LSurvRNC , a loss function that ranks patients’ representations in the
embedding space based on their true time-to-event differences. Given an anchor
patient, Pa, we estimate the exponential increase in the likelihood of any other
positive pair patient, Pp, based on their similarity in the latent representation
space. The time-to-event difference between Pa and Pp is denoted by ∆Ta,p ≜
|T a − T p|. The set of patients k in the sampled batch that have higher time-
to-event differences than Pp from the anchor patient Pa is denoted by, Sa,p ≜
{k : k ∈ [1, N ]\{a}, ∆Ta,k ≥ ∆Ta,p}. This set includes all indices k for which the
time difference ∆Ta,k is greater than or equal to ∆Ta,p. Hence, the normalized
likelihood ℓ is given by

ℓa,p =
exp (sim (va,vp) /τ)∑

k∈Sa,p
exp (sim (va,vk) /τ)

(1)

where sim(·, ·) and τ denote the similarity measure (L2 norm) and tempera-
ture parameter, respectively. Patients whose ∆T < ∆Ta,p are disregarded in the
equation. Maximizing ℓ in Equation 1 brings the feature representations va and
vp closer compared to the other representations vk in the set Sa,p. Typically, all
patients in the set Sa,p are considered negative pair(s), but the presence of cen-
soring in survival prediction datasets presents some unique circumstances due
to uncertain ∆T . Consequently, the set Sa,p now includes both the negative pair
(Na,p) and uncertain pair (Ua,p) sets, i.e. Sa,p = {Na,p ∪ Ua,p}

Consider the example in Figure 2, in which we have nine patients in a batch,
three of whom are censored. Figure 2(a) shows a scenario where the anchor
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Fig. 2. Overview of the proposed LSurvRNC loss function for learning ordinal represen-
tations. In a randomly weighted sampled batch of M patients, the loss function ranks
them with respect to their time-to-event differences with the anchor. Contrasting the
anchor patient with a positive pair patient enforces the similarity in the embedding
space to be higher than the negative pair(s) of patients with a larger time-to-event
difference than the positive pair. The uncertain patient pair(s), whose real-time differ-
ence with the anchor patient is unknown, are given less weight. (a) shows an example
of an uncensored anchor and positive-pair patient. (b) shows an example of a censored
anchor with an uncensored, positive pair. (c) provides all different combinations that
can occur between a batch of patients.
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patient Pa and the positive pair Pp are both uncensored with a time difference
∆Ta,p = 100. In this case, four pairs of patients with ∆Ta,k > 100 will become
part of the negative pair set Na,p, and two pairs of patients will become part
of the uncertain pair set Ua,p. Note that for the latter, their real time-to-events
are unknown due to censoring. Thus, they can have ∆T ≤ 100 or ∆T > 100,
i.e., to be disregarded from the equation or part of the negative pairs. Similarly,
Figure 2(b) shows a scenario where Pa is censored and Pp is uncensored, and
the corresponding pairs that belong to Na,p and Ua,p. In total, we have six
possible combinations of (Pa,Pp) in any batch, as shown in Figure 2(c), based
on the censoring status of Pa and Pp and their temporal positions relative to
one another.

Consequently, when working with a randomly weighted sample batch M of
input, event, and target pairs, {(Xj , ej , T j)}j∈[M ], we first apply data augmen-
tations to produce a two-view batch {(X̃j , ej , T j)}j∈[2M ]. Due to the presence
of uncertain pairs in Ua,p, ℓ̂ can be formulated as

ℓ̂a,p =
exp (sim (va,vp) /τ)∑

k∈Na,p
exp (sim (va,vk) /τ) + λ

∑
k∈Ua,p

exp (sim (va,vk) /τ)
(2)

The loss function LSurvRNC that is used to learn an ordered representation in
the embedding space is given by

LSurvRNC =
1

2M

2M∑
a=1

1

2M − 1

2M∑
p=1,p̸=a

− log ℓ̂a,p (3)

Intuitively, by minimizing the loss function, it encourages the similarity be-
tween an anchor patient Pa and a positive pair patient Pp to be larger than the
similarity between anchor patient Pa and any other patient Pk in the set Sa,p.
The parameter λ ∈ [0, 1] in the LSurvRNC allows us to control the weightage
given to the uncertain pairs in set Ua,p. By setting λ = 0, the pairs in Ua,p are
disregarded, and if λ = 1, then they are given equal weightage as the pairs in the
negative pair(s) set Na,p. The total loss LTotal used to optimize the deep neural
network-based survival model will consist of the native prognosis loss function
used to optimize a specific survival model and the proposed LSurvRNC . The
hyperparameter β, provides weightage to LSurvRNC .

LTotal = LPrognosis + β ∗ LSurvRNC (4)

3 Experimental Setup

3.1 Configurations, Implementation and Baselines

We experiment with two different deep neural network-based survival models,
i.e., DeepMTLR [8], and DeepHit [14] and investigate the impact of incorpo-
rating LSurvRNC on the prediction performance. We also compare the proposed
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Table 1. Performance of different
deep survival models on 5-fold cross-
validation of hecktor dataset.

CI ↑ AUC ↑Metrics →
Models ↓ 25% 50% 75%

DeepMTLR [8]
LMTLR 0.634±0.03 0.680 0.684 0.661
LMTLR + LSurvRNC 0.701±0.04 0.727 0.713 0.707

DeepHit [14]
LHit 0.661±0.07 0.683 0.641 0.563
LHit + LSurvRNC 0.723±0.03 0.715 0.709 0.756

Table 2. Comparison with state-of-
the-art survival prediction methods in
leave two center out evaluation.

Methods CI↑

CoxPH [6] Radiomics 0.745±0.02
ICARE [21] Radiomics 0.765±0.02
Ensemble [22] CNN 0.748±0.03
TMSS [23] ViT+CNN 0.761±0.03
DeepMTS [17] CNN 0.757±0.02
XSurv [16] Hybrid 0.782±0.02
Radio-XSurv [16] Hybrid+Rad. 0.798±0.02

SurvRNC CNN 0.827±0.032

method with several top-performing survival prediction techniques for H&N can-
cer, including the Cox-PH [6] method and individual coefficient approximation
for risk estimation (ICARE) [21]. Additionally, the proposed method was con-
trasted with other advanced models, such as DeepMTLR-CoxPH [22], DeepMTS
[17], TMSS [23], and XSurv [16].

A uniform framework is defined to present a standardized testing environ-
ment for all networks, ensuring equality and impartiality with respect to patch
dimensions, configuration, augmentations, training, and assessment.We imple-
mented the proposed framework and conducted all experiments using an NVIDIA
A6000 GPU (48 GB) with PyTorch [19] version 1.12.1 and CUDA 11.6. The mod-
els are trained for 50 epochs, with a batch size of 32, learning rate of 1× 10−4,
and weight decay of 1× 10−5. A simple deep neural network has been designed,
as shown in Figure 1. The feature extractor fθ(·) consists of a CNN block that
extracts representations from CT and PET scans in a latent space and an MLP
block that obtains representations of EHR data in the same latent space. These
latent representations are then combined and fed into a survival prediction model
sϕ(·) for making survival probability predictions. LSurvRNC is applied in the
embedding space after fθ(·). The architecture remains the same for all our ex-
periments, except for the survival predictor sϕ(·) at the head, which can be
DeepMTLR [8] or DeepHit [14].

3.2 Dataset

The dataset used is called HECKTOR (Head & neCK TumOR segmentation and
outcome prediction) [2], a multi-modal and multi-center head and neck cancer
patient data. The data consists of CT and PET scans with their segmentation
masks and EHR for 488 patients. This dataset was collected from seven centers
and contains Recurrence-Free Survival (RFS) data, including time-to-event and
censoring status. Approximately 70% of the patients in the dataset are censored.
The clinical indicators distributions are provided in Appendix Table 3, and the
preprocessing steps and augmentation details are provided in Appendix Table 4.
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4 Results and Discussion

Table 1 compares the performance of different deep survival-based models on a
5-fold cross-validation when they are trained using only their respective native
losses and when they are trained including the proposed loss term, LSurvRNC .
The evaluation metric is the concordance index (CI) and AUC at three points
in the future, specifically 25%, 50%, and 75% of the maximum duration. It
can be observed that including the proposed LSurvRNC boosts the performance
in all the considered models. This is because the proposed loss is ordering the
latent representation, which in turn helps achieve higher performance in survival
predictions.

In recent work [16], the authors used the same dataset and evaluated the per-
formance of different state-of-the-art survival prediction models. In their work,
patients from two centers (CHUM and CHUV) were used for testing, and other
centers’ data were used for training, which split the data into 386/102 patients
in training/testing sets. Table 2 compares the performance of the DeepHit model
trained using its native loss and LSurvRNC on this train-test split. It is shown
that the proposed method gives the highest CI on this test set compared to
all the rest of the methods, which even includes complex architectures such as
TMSS [23], DeepMTS [17], and XSurv [16]. One point to highlight here is that all
these complex models are trained using both the segmentation masks and time-
to-event labels. In contrast, the proposed method achieves better performance
with a simple model architecture and approach without utilizing segmentation
masks, showing the effectiveness of regularizing the latent representations by
ordering them.

Despite a good performance on this particular train-test split, we believe
that this is an easy test set as it does not adequately capture the complexity of
the overall dataset, as can be observed by comparing Table 2 results with the
5-fold cross-validation results in Table 1. Hence, we repeated our evaluation (i.e.,
involving the native loss alone and including LSurvRNC) on the private test set
by submitting the predictions on their online portal. The test set consists of 339
patients from three different centers (out of which two centers are not part of the
training set), which makes it a difficult test set. The CI score on the test set for
the proposed method is 0.66, higher than any other method using only time-to-
event labels for training. Notably, this result is on par with the best model from
the HECKTOR leaderboard (which is trained using both segmentation mask
and time-to-event labels, unlike ours, which uses time-to-event labels only).

We believe that these experiments and results show the effectiveness of the
proposed methodology, where LSurvRNC loss function is used to order the latent
representations based on the time-to-event and censored label information. The
ablation study Table 5 in Appendix shows that the weightage parameter λ = 0.5
gives the best concordance index, which is in line with the assumption that the
patients in uncertain pair set (Ua,p) has an equal probability of being in negative
pair set (Na,p) or disregarded in the LSurvRNC calculations. In addition, we
present further evidence of continuity in the learned representations using a
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larger dataset with less proportion of censored patients (SUPPORT [12]) in
Figure 3 of Appendix.

5 Conclusion

This work introduces a novel loss function called SurvRNC to order the latent
representation according to time-to-event target labels for a survival predic-
tion task. Exhaustive experimental results demonstrate that the proposed func-
tion surpasses existing state-of-the-art methods on the extensively benchmarked
HECKTOR dataset for survival prediction. Future research may explore the po-
tential of the SurvRNC method by incorporating it into end-to-end segmentation
and prognosis models. Furthermore, the proposed approach could be applied to
similar tasks with alternative datasets to evaluate its generalizability.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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