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Abstract. Predicting the probability of human error is an important
problem with applications ranging from optimizing learning environ-
ments to distributing cases among doctors in a clinic. In both of these
instances, predicting the probability of error is equivalent to predicting
the difficulty of the assignment, e.g., diagnosing a specific image of a
skin lesion. However, the difficulty of a case is subjective since what is
difficult for one person is not necessarily difficult for another. We present
a novel approach for personalized estimation of human difficulty, using
a transformer-based neural network that looks at previous cases and if
the user answered these correctly. We demonstrate our method on doc-
tors diagnosing skin lesions and on a language learning data set showing
generalizability across domains. Our approach utilizes domain represen-
tations by first encoding each case using pre-trained neural networks and
subsequently using these as tokens in a sequence modeling task. We sig-
nificantly outperform all baselines, both for cases that are in the training
set and for unseen cases. Additionally, we show that our method is ro-
bust towards the quality of the embeddings and how the performance
increases as more answers from a user are available. Our findings sug-
gest that this approach could pave the way for truly personalized learning
experiences in medical diagnostics, enhancing the quality of patient care.

Keywords: Learning · Difficulty estimation · Sequence modelling.

1 Introduction

Doctors are dedicated to delivering optimal care to their patients, for which
accurate diagnoses are paramount. Gaining experience is essential for profi-
ciency, yet acquiring expertise in skin cancer diagnostics typically requires sev-
eral years [16]. An alternative approach involves learning within a controlled
environment, where exposure to cases with increasing difficulty can facilitate
accelerated learning [12]. Prior research has concentrated on assessing a general
case difficulty [6], or personal skill inferred purely from user answers [2]. How-
ever, in reality, the difficulty of a specific case will be different from person to
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Fig. 1: Overview of our method. We predict the probability of a user answering
correctly on a new case, given their history in the form of embeddings of the
previous cases and which of these they answered right and wrong.

person and depend on their individual experience, which is the focus of this pa-
per. Namely, we deal with the problem of estimating personalized difficulties in
unseen cases. The ability to predict the correctness of a doctor’s diagnosis has
wide-ranging applications, such as optimizing the allocation of diagnostic cases
between multiple doctors in a clinic, to maximize the probability of correct diag-
noses. Additionally, personalized models for difficulty could assist in uncovering
biases. The problem of predicting if a doctor will diagnose correctly is equivalent
to predicting the correctness of a student’s answer in a testing environment and
we focus on the latter due to data availability. We use a transformer-based neural
network that, based on previous cases and the doctor’s answers, can estimate
their probability of answering correctly on a new unseen image. An overview of
our method is in Figure 1. We compare our method to the difficulty estimation
method by Hannemose et al. [6], the Elo rating system [4], Bayesian Knowl-
edge Tracing (BKT) [2] and the expected difficulty. We present results on two
datasets, one consisting of images of skin lesions accompanied by diagnoses from
medical students and the publicly available Duolingo SLAM dataset [14]. We
show the efficacy of our method across domains and through the simulation of
real-world scenarios. Put together, this opens the possibility of truly personalized
learning tailored to each doctor. In summary, our contributions are:

– We combine the domain understanding of pre-trained models with sequence
modeling, obtaining state-of-the-art personalized difficulty predictions.

– We can handle any number of previous answers from a user, with increasing
performance for more answers, yet still outperform state-of-the-art for users
with very few answers.

– Our method generalizes without modification to cases not present in the
training data, with a wider performance gap compared to previous work.

2 Related work

Estimating how difficult a given task is for a specific person is of great interest.
Multiple prior works have tackled this issue. Tudor et al. [17] use the time taken
for a visual search task as a proxy for the difficulty. They estimate this difficulty
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with a convolutional neural network, enabling them to predict the difficulties of
new natural images. Hannemose et al. [6] estimated the diagnostic difficulty of
medical images and demonstrated their method on dermoscopic and otoscopic
images. Varshney et al. [18] estimate the difficulty of instances for machine learn-
ing models in natural language processing. Finally, Settles et al. [15] estimate the
difficulty of cases in English tests using natural language processing. However,
these methods do not account for user variation and seek to model a ’global’ dif-
ficulty. Multiple prior works have also attempted to estimate how the skills of a
user can develop over time. Among these is Bayesian Knowledge Tracing (BKT)
[2]. Many versions exist that vary in terms of, e.g., the possibility of forgetting
[1] and individual learning parameters [21]. The Elo rating system [4], widely
used to rank chess players, can be used to handle the problem of users and cases
in an environment similar to ours [9]. Both doctors and cases can be treated as
players, and a doctor diagnosing a case correctly or incorrectly constitutes a win
or loss, which then allows the difficulty of the case and the skill of the user to
be updated. Klinkenberg et al. [9] implement this in an online learning setting
and incorporate the time taken to answer. Hofman et al. [8] expanded on this
to allow for statistical inference. We note that methods that estimate a single
difficulty per case [17,6,18,15] utilize information obtained directly from the case
to ease the estimation. In contrast, methods that can estimate individual diffi-
culties that change over time do not [4,9,21]. Our proposed approach combines
both advantages by using information about the case in the form of pre-trained
embeddings and estimating individualized difficulties.

3 Method

Most methods for difficulty estimation for continuously learning users e.g., Bayes-
ian Knowledge Tracing [2] and the Elo rating system rely on a single difficulty
estimate for a specific case. This parameter is then governed by an underlying
latent variable that describes the actual features of the case. However, these are
generally not explicitly modeled. Therefore, these methods cannot model un-
derlying similarities between cases, only how users usually respond to these. In
this paper, we seek to model the tasks or problems directly by leveraging deep
neural networks to yield explicit representations. Consider a set of test items
belonging to a domain D, e.g. skin lesions, where the items are images of these.
Let f : D → Rn be a neural network mapping from this domain onto a vector
representation. Suppose a user is repeatedly tested over time while improving
based on feedback or teaching. We denote the sequence of test items i = 1, . . . , k
for user u by du

i ∈ D. The corresponding latent representation of the sequence
is then f(du

i ) = xu
i . We employ a transformer encoder-based model [19], with

an objective similar to the masked language modeling [3]. We, therefore create
sequences of vector representations of the test items along with additional infor-
mation. For the ith test case presented to the user u, du

i , we represent whether
the user answered correctly as a one-hot encoded vector cui . We are interested in
predicting the probability of the user answering correctly P (cup) on a new case
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Table 1: Description of the model. Each transformer uses four attention heads,
and MLP denotes multi-layer perceptrons. h is 512 and 1224 for the Skin lesions
and Duolingo datasets respectively. m is the sequence length.

Long skip connection Module Input dim. Output dim.

MLP (m, w) (m, h)
Transformer (m, h) (m, h)
Transformer (m, h) (m, h)
Transformer (m, h) (m, h)
Transformer (m, h) (m, h)
Transformer (m, h) (m, h)
Transformer (m, h) (m, h)
Transformer (m, h) (m, h)
Last Token (m, h) (1, h)
MLP h + w 2

with representation xp, given the sequence of preceding case representations and
answers. Due to the temporal nature of learning, we employ temporal encodings
rather than positional encodings based on the time since the answers. When
predicting for xp answered at time tp, conditioned on xu

i at time tui , the tem-
poral encoding for xu

i is then σ(tp − tui ), where σ(·) is the sigmoid function. In
most testing scenarios, additional information on the case e.g. the time taken to
answer, may be available. We encode any additional information in a vector lui .
We loosely employ the terminology from Natural Language Processing (NLP).
Hence, we shall refer to each input that forms our sequence as tokens, which are
vu
i = [xu

i , l
u
i , c

u
i , σ(tp − tui )] ∈ Rw−n. Since the model predicts on xp, we allow

it to focus on this by concatenating it to all tokens in the sequence. Hence, the
model is given sequences of the form(

[vu
1 ,xp] , [v

u
2 ,xp] , . . . , [v

u
k ,xp] ,

[
xp, lp, [0 0], σ(0),xp

])
. (1)

At training time, sequences are generated by randomly sampling a sequence
length and then sampling cases from a user. We employ a transformer-encoder
architecture as described by Vaswani et al. [19]; however, we modify it using
’long’ skip connections along with the skip connections of the original model
architecture, see Table 1. As the computational complexity grows with the square
of the maximum sequence length m in transformers, we present two approaches
to improve performance when more than m answers are available. Our base
model approach uses the previous m− 1 answers from the sequence. The first is
to sample multiple random subsets of the user’s previous answers and to average
the predictions. Finally, we propose sampling the m − 1 cases with the highest
cosine similarity to xp and only including these in the sequence. Each model is
trained for a maximum number of 400 epochs, with a batch size of 200, using
early stopping on the validation set to prevent overfitting with balanced accuracy
as the metric.
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Table 2: Training, validation, and test splits. Splits are done on a user basis.
Training and validation numbers are medians over the five cross validation splits.

Num. users Mean num. answers Data points Mean correct

Skin
Lesions

Training 60 565 33,900 47.8%
Validation 11 565 6,215 47.8%
Test 11 570 6,270 46.5%

Training 2074 145 300,730 62.4%
Duolingo Validation 519 145 72,255 62.4%

Test 2568 19 48,792 59.7%

3.1 Baseline methods

We compare with four baseline results, where the first is an Expected difficulty
estimate. Let Dp be the set that contains all answers on case p in the training
set, where each element is either 1 for a correct answer or 0 for an incorrect
answer. Then the probability of a user u, in either the validation or test set,
answering correctly on case p is given by P

(
cup
)
=

∑
c∈Dp

c
|Dp| . For cases not

present in the training set, we sample predictions according to the general class
distribution. As the second method, we use the Elo rating system [4], where each
case and user is treated as a player in a tournament as described in Section 2.
The method works by iteratively updating the ratings of users and cases. Let
su,t and sp,t be the ratings of a user and case at time t. Then the probability that
the user answers correctly on the case is P

(
cup
)
= 1

1+10δ/T
where δ = su,t − sp,t

and the temperature, T , is a hyperparameter. Using the actual outcome, cup , and
the second hyperparameter k, the ratings are updated

su,t+1 = su,t + k
(
cup − P (cup)

)
, sp,t+1 = sp,t + k

(
P (cup)− cup

)
. (2)

The third model is based on Hannemose et al. [6] (Predicted global difficulty),
which utilizes embeddings similar to ours and trains an ExtraTrees regressor [5]
on the embeddings concatenated with a class label. This allows for predicting a
constant difficulty estimate for unseen cases. Finally, we compare with Bayesian
Knowledge Tracing (BKT) [1]. BKT models the student’s knowledge as a latent
variable in a hidden Markov model. Specifically, we use KT-IDEM [10], with
a non-zero probability of forgetting. This version of BKT models both item
difficulty and user skill. Hyperparameters for all baseline methods are found
using a grid search to maximize the balanced accuracy on the validation sets.

4 Data

We demonstrate our method on two datasets from different domains, see Table 2.
Skin lesions imaged with dermoscopy were diagnosed into eight types of

diagnoses by 82 medical students. Each medical student attempted to diagnose,
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Table 3: Accuracy and balanced accuracy (B. accuracy) on the test set for the
baselines and our base model with maximum sequence length m = 200 and our
two methods for handling sequences longer than m. The Duolingo test set has
no sufficiently long sequences.

Skin lesions Duolingo
Accuracy ↑ B. accuracy ↑ Accuracy ↑ B. accuracy ↑

Predicted global difficulty [6] 0.652 ± 0.02 0.641 ± 0.02 0.657 ± 0.00 0.620 ± 0.00
BKT [1,10] 0.566 ± 0.01 0.562 ± 0.00 0.601 ± 0.00 0.544 ± 0.00
Expected difficulty 0.654 ± 0.00 0.648 ± 0.00 0.652 ± 0.00 0.612 ± 0.00
Elo Rating [4] 0.610 ± 0.01 0.605 ± 0.01 0.610 ± 0.00 0.547 ± 0.00

Our base model 0.696 ± 0.01 0.692 ± 0.010 0.703±0.03 0.681± 0.03
+ 10×random sampling 0.705 ± 0.02 0.704 ± 0.02 N/A+ cosine-similarity 0.717±0.02 0.715± 0.02

on average, 566 dermoscopic images randomly sampled from a pool of 1723
images. We have access to all student and ground truth diagnoses and refer to
Hannemose et al. [6] for further information about the dataset. We randomly
split the data on a person level, such that answers from one student only appear
either in the training, validation, or test set. This was done to simulate a real-
world setting, where such a model needs to generalize across users. Furthermore,
the splits were obtained independently of the number of correct and incorrect
answers to ensure limited bias, particularly for the constant difficulty baseline
method. We make five train/validation splits, keeping a constant test set. For
the encoder, we follow Hannemose et al. [6] and train a ResNet50 [7] with a
multi-similarity loss function [20]. l contains the time to respond, the ground
truth diagnosis, and the diagnosis from the user.

Duolingo SLAM is an open-source dataset [14]. We use the ’reverse trans-
late’ task with native English speakers translating from Spanish to English, with
the original task being to predict errors on a word basis. However, since we con-
sider overall problems, we collapse the labels such that if a single error is made,
the entire translation is wrong. We subsume the allocated development set into
the dataset and make five random train/validation splits. In total 3226 different
cases are in the test set. The given test set is kept. We employ a SentenceBERT
encoder with a DistilBERT base model [11,13]. l contains the time to respond.

5 Results

We present our main results in Table 3. Our method significantly outperforms
the baseline methods on both datasets. Furthermore, of the two approaches for
handling longer sequences, selection based on the cosine similarity between cases
also yields a further increase in performance.

In almost any learning environment, new cases will continuously be added
to the curriculum. Estimating the difficulty of such cases is difficult even for
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Table 4: Balanced accuracy score for cases not present in the training set.

Ours Predicted global difficulty BKT Elo

Skin Lesions 0.602± 0.03 0.516± 0.02 0.558± 0.02 0.505± 0.00
Duolingo 0.624± 0.04 0.585± 0.01 0.517± 0.00 0.512± 0.01

Table 5: Test results on the skin lesions for variations of our model, m = 200.
The CLS token denotes a learned representation added to the sequence [3].

Encoder Num. Encoder Balanced
layers heads dim. Pooling accuracy Accuracy

Base model 8 4 512 Last token 0.692±0.012 0.696±0.013

Vary num.
encoder layers

2 4 512 Last token 0.650 ± 0.012 0.655 ± 0.012
4 4 512 Last token 0.662 ± 0.028 0.664 ± 0.028
6 4 512 Last token 0.686 ± 0.020 0.687 ± 0.020

Vary num.
attention heads

8 2 512 Last token 0.676 ± 0.018 0.678 ± 0.018
8 8 512 Last token 0.689 ± 0.016 0.691 ± 0.017

Vary encoder
dimensionality

8 4 256 Last token 0.674 ± 0.020 0.677 ± 0.020
8 4 1024 Last token 0.692±0.015 0.696±0.016

Vary pooling 8 4 512 Average 0.676 ± 0.014 0.680 ± 0.013
8 4 512 CLS token 0.675 ± 0.016 0.685 ± 0.015

No long skip conn. 8 4 512 Last token 0.684 ± 0.018 0.691 ± 0.018

experts. We have split our data such that there are cases in both test sets that
are not present in training or validation. In the Skin lesions, these are 192 cases
with 2112 responses, for Duolingo these are 509 cases with 9608 responses, and
our performance on these are in Table 4. For Elo and BKT, we initialize their
scores/difficulties as the mean of the training cases and let them update through-
out the predictive process. All methods experience a notable drop in performance
compared to Table 3, however, our method still significantly outperforms the
baselines. Expected difficulty is not included, as it is undefined in this case.

In Figure 2a we test the reliance on the embedding quality for the two
embedding-based methods, ours and predicted global difficulty [6]. They both
use pre-trained encoders to compute the embeddings they use for prediction.
We add increasing levels of noise to these embeddings and allow both models to
fine-tune on the perturbed embeddings. We observe that our method is more ro-
bust for low noise levels, with only a slight drop in performance for the first four
levels. At higher levels, most information in the embedding space is lost, and the
performance reverts to approximately that of expected difficulty. In Figure 2b we
test the performance of the models as a function of the number of previous cases
available. The performance of our model increases rapidly for the first few cases,
and it requires only 20 cases to outperform the two constant difficulty baselines
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Fig. 2: Performance evaluation of the methods with noise and long sequences.

and always yields higher performance than Elo and BKT. To verify the choice
of architecture, we present results for different hyperparameters in Table 5.

6 Discussion and conclusion

We observe that having a measure of similarity between cases, be it from the
attention mechanisms in the transformer model or the cosine similarity-based
case selection, significantly improves the accuracy of the difficulty estimation.
Methods such as Elo and BKT that rely solely on low-dimensional measures of
skill and difficulty do not adequately capture the relationships between cases. For
example, Figure 2b, demonstrates that our method requires significantly fewer
cases to accurately encode the skill level compared to both Elo and BKT. This
is useful in practical applications, especially early in the learning setting when
few previous answers are available, as one would still want to provide examples
with the right difficulty. However, our model also has a limitation in this aspect.
As it contains no explicit term for the user’s skill, initializing a new user at a
specific skill level is not currently possible.

When presented with unseen cases, most baseline methods revert to almost
random guessing. Our method is more robust in this setting, maintaining signif-
icantly higher performance. The performance exhibited by our model on unseen
cases is encouraging for applications beyond the learning domain, such as in
a clinical setting where all cases are unseen and should be distributed among
doctors to diagnose. The model could be used to assign cases to those with the
highest probability of diagnosing correctly. Future work could also investigate
including a neural network as a user in our model. This would provide a measure
of the trust that should be placed on human and AI diagnoses respectively.

In conclusion, we have established a new state-of-the-art for individualized
human difficulty estimation. By leveraging information from both cases and
users, we achieve superior performance with fewer samples than other methods.
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