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Abstract. Accurate identification of arteries and veins in ultrasound
images is crucial for vascular examinations and interventions in robotics-
assisted surgeries. However, current methods for ultrasound vessel seg-
mentation face challenges in distinguishing between arteries and veins
due to their morphological similarities. To address this challenge, this
study introduces a novel force sensing guided segmentation approach to
enhance artery-vein segmentation accuracy by leveraging their distinct
deformability. Our proposed method utilizes force magnitude to identify
key frames with the most significant vascular deformation in a sequence
of ultrasound images. These key frames are then integrated with the cur-
rent frame through attention mechanisms, with weights assigned in accor-
dance with force magnitude. Our proposed force sensing guided frame-
work can be seamlessly integrated into various segmentation networks
and achieves significant performance improvements in multiple U-shaped
networks such as U-Net, Swin-unet and Transunet. Furthermore, we con-
tribute the first multimodal ultrasound artery-vein segmentation dataset,
Mus-V, which encompasses both force and image data simultaneously.
The dataset comprises 3114 ultrasound images of carotid and femoral ves-
sels extracted from 105 videos, with corresponding force data recorded
by the force sensor mounted on the US probe. The code and dataset can
be available at https://www.kaggle.com/datasets/among22/multimodal-
ultrasound-vascular-segmentation.

Keywords: Force fusion · Sequential ultrasound images · Artery-Vein
segmentation.

1 Introduction

Vascular intervention surgery (VIS) is a minimally invasive surgical technique
involving catheter or device insertion into blood vessels [6]. This real-time and
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low-risk surgery plays a crucial role in treating various diseases such as coronary
artery diseases [22] and peripheral vascular diseases [2]. Accurate segmentation
of arteries and veins is vital in VIS, enabling clinicians to precisely identify
target vessels for intervention and minimizing the risk of inadvertent injury to
adjacent structures [19]. As a non-invasive, radiation-free and real-time modality,
ultrasound imaging is widely used in VIS [7]. Therefore, artery-vein segmentation
in ultrasound images is crucial for enhancing the safety and efficacy of VIS.

Ultrasound vessel segmentation, a subset of medical image segmentation, is
developing rapidly, primarily because of the rapid evolution of deep learning
techniques [24]. In particular, a series of U-shaped networks have demonstrated
outstanding performance [21,12,3,4,5] and been widely applied in ultrasound ves-
sel segmentation. Xie et al. [25] directly utilized UNet [21] to segment carotid
artery lumen. Blanco et al. [1] presented a modified UNet to exploit adjacency
information in spatially neighboring ultrasound images for intravascular ultra-
sound images segmentation. Groves et al. [8] employed both Mask-RCNN [10]
and UNet to segment carotid artery (CA) and internal jugular vein (IJV).

However, current ultrasound vessel segmentation networks either solely fo-
cus on morphological features within a single image [8], making it challenging
to differentiate arteries and veins that are morphologically similar, or only seg-
ment vessels without distinguishing between arteries and veins [18,25,1]. In clin-
ical practice, doctors typically differentiate arteries from veins by palpating the
patient’s skin and observing the degree of vascular deformation in ultrasound
images [14]. During this process, arteries exhibit minimal deformation under
compression, while veins undergo significant deformation and can even be com-
pletely occluded [14]. Inspired by this method, we propose a novel force sensing
guided approach for ultrasound artery-vein segmentation.This method aims to
precisely segment arteries and veins using tactile force data, especially in sce-
narios involving robotic ultrasound systems.

Robotic Ultrasound Systems (RUS) can improve the accuracy and safety of
VIS through accurate image guidance and robotic arm operation, and provide
better operating experience for doctors [9,16,17,15]. We set up a simple RUS in
our experiments as shown in Fig. 1(a). The sensor mounted on the US probe
can collected real-time force data, which is employed as a prior to identify key
frames that represent maximum deformation. These key frames effectively cap-
ture and store vascular deformation information, aiding in distinguishing the
distinct deformability of arteries and veins as shown in Fig. 1(b). Then we can
retrieve the stored information by computing the correlation between key frames
and the current frame to get enhanced features. To validate the effectiveness of
the proposed method, we also contribute a benchmark dataset containing both
ultrasound images and force data called Mus-V.

The main contributions are: (1) We present a novel force sensing guided
segmentation approach that utilizes force data to assist in artery-vein segmenta-
tion, leading to enhanced segmentation accuracy. (2) Our method is versatile
and demonstrates substantial performance improvement across multiple seg-
mentation networks. (3) We contribute the first publicly available ultrasound
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Fig. 1. (a) Hardware setup: a robotic arm, a force/torque sensor and an ultrasound
probe. {S1} and {S2} respectively stand for coordinate systems of the sensor and the
US image (b) An illustration of data acquisition. The force along the z-axis, |Fz|,
initially increases and then decreases over time t. Eleven points are selected along the
curve, with corresponding force magnitudes and ultrasound scans. Veins are labelled
in blue, while arteries are labelled in red. Notably, veins exhibit higher deformability
compared to arteries.

artery-vein segmentation dataset with force data, providing a baseline for future
researches.

2 Ultrasound Vascular Dataset with Force data

We introduce Mus-V: the first ultrasound artery-vein segmentation dataset con-
taining both force and image data. The dataset collects ultrasound videos of
carotid and femoral blood vessels, with the arteries and veins labelled separately
for vascular analysis and identification. In addition, the dataset also records
the force data collected by the force sensor mounted on the ultrasound probe
during the collection of ultrasound videos. The structure of the robotic ultra-
sound system consists of an ultrasound (US) probe, a robotic arm carrying the
US probe and a force/torque sensor mounted on the US probe (see Fig. 1(a)).
In each data collection session, an ultrasound video is recorded in conjunction
with corresponding force data. The contact force between the US probe and the
skin is systematically adjusted to vary gradually. Meanwhile, the deformation
of blood vessels is also strengthened or reduced as Fig. 1(b) shows. Subsequent
to acquisition, the ultrasound videos and force data undergo aligning, cleaning,
downsampling, and annotation.

A total of 3114 ultrasound images were sampled from 105 ultrasound videos
collected from 11 healthy volunteers. The training and validation datasets com-
prise 2203 and 911 images, respectively. The force data is organized in a matrix
format, with each row corresponds to an ultrasound image. Each column, from
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Fig. 2. Illustration of our proposed Force Sensing Guided Segmentation Framework.
Selected key frames and the current frame are fed into a shared encoder to extract
features. The force-guided attention module captures relation between embeddings of
key frames and current frames, generating an enhanced embedding D̃V . The value
embedding of current frame EV is concatenated with D̃V to get final segmentation
result through the decoder. Skip connection is applied between the encoder and the
decoder.

the first to the last, represents the force components in the X, Y, and Z directions,
as well as the moment components in the X, Y, and Z directions, respectively.

3 Method

3.1 Overview

The most obvious difference between arteries and veins in US images lies in the
extent of deformation when contact force varies. Therefore, capturing the defor-
mation of vessels over time is crucial for accurate segmentation, which requires
to compare different frames within the same video. Deformation magnitude cor-
relates directly with force magnitude, thereby we utilize contact force data to
identify key frames for reference. The selected key frames exhibit the most sub-
stantial degree of vascular deformation. Specific method for selecting key frames
is described in Sec. 3.2. These key frames aid in differentiation between arteries
during the subsequent segmentation process.

Image segmentation networks based on the UNet architecture typically con-
sist of an encoder that downsamples features and a decoder that upsamples fea-
tures. Skip connections are utilized between different stages of the encoder and
the decoder to fully leverage information at various resolutions. In the proposed
fusion approach, key frames and the current segmentation frame are firstly fed
into a shared encoder for feature extraction, with the final stage of the encoder
outputting features with low resolution and high channel numbers. Subsequently,
these features are processed by our proposed force-guided attention module. The
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fused features then enter the decoder to restore the original resolution and ob-
tain the mask. This design allows for the encoder and decoder to be replaced
with any U-shaped network, thereby enhancing the versatility of the method.

3.2 Force-Driven Keyframe Selection

In the Robotic Ultrasound System, magnitude of contact force varies contin-
uously, and changes between two consecutive frames may not be particularly
evident. The magnitude of deformation is directly positively correlated with mag-
nitude of force along the z-axis. Therefore, we utilize force along the z-axis to
select key frames that contain the most significant deformation information. The
target ultrasound image for segmentation is denoted as Kcur. Kcur is one frame
from an ultrasound video with a duration of T and K = {K0, . . . ,KT } indicates
the set of all the frames in the same video. Correspondingly, F = {F0, . . . , FT }
represents the absolute value of force along the z-axis collected with K.

As illustrated in Eq. 1, we select the image frame corresponding to the max-
imum force, denoted as Kmax, and the frame corresponding to the minimum
compression force, denoted as Kmin. These frames, Kmin and Kmax are referred
to as key frames. {

Kmin = Kargmint Ft

Kmax = Kargmaxt Ft

(1)

Therefore, Kmin corresponds to the most dilated form of the blood vessel, while
Kmax corresponds to the most compressed form.

3.3 Force-Guided Attention Module

The output of the encoder has high-dimensional channels which are computation-
ally expensive. Inspired by [23], we firstly apply an encoding layer to the output
for channel reduction. As illustrated in Fig. 2, the encoding layer including a 1x1
convolution and a 3x3 convolution will generate a key feature and a value feature.
We respectively stack the key features and value features related to key frames
Kmin and Kmax, and obtain a 4-dimension key feature DK ∈ RN×CK×H×W and
a 4-dimension value feature DV ∈ RN×CV ×H×W , where N = 2. CK and CV

represent the number of channels for key and value features respectively. EK

and EV are the corresponding key and value feature related to Kcur.
For frames in proximity to a key frame, the reference value of the key frame

is negligible. For example, if Kcur = Kmax, then Kmax will fail to provide any
meaningful information. Therefore, we propose a force-based dynamic weighting
strategy, assigning a higher weight to the key frame with lower similarity to the
current frame. Detailed calculation of weights is illustrated in Sec. 3.4.

After obtaining force-based weights wmin and wmax, we perform element-wise
multiplication between the weights and DV to get weighted values D̂V . Then,
EK is reshaped and transposed to EK ∈ RCK×M , M = H×W . Meanwhile, DK

and D̂V are permuted and reshaped to D̂K ∈ RCK×NM and D̂V ∈ RCV ×NM .
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Subsequently, we conduct matrix multiplication between DK and EK , and
utilize a softmax layer to compute the attention map S ∈ RN×M ,

Sij =
exp (Di

K · Ej
K)∑E

j=1 exp (D
i
K · Ej

K)
(2)

A larger value of Sij indicates that the ith position in DK has a greater influence
on the jth position in EK Memory. After obtaining the attention map S, we
multiply S and D̂V to get the force-guided enhanced feature D̃V . Finally, we
combine D̃V with the value feature of the current frame. For simplicity, we utilize
feature concatenation to get the aggregated multimodal feature f as follows:

f = concat(D̃V , EV ) (3)

3.4 Force-Based Dynamic Weights

Adhering the principle that a higher weight is assigned to the key frame with
lower similarity to the current frame, we design a weight calculation formula
based on force magnitudes. The dynamic weights are directly proportional to
the difference in force magnitudes and lies within the range of [0, 1],

wmin =
Fcur − Fmin

Fmax − Fmin
(4)

wmax =
Fmax − Fcur

Fmax − Fmin
(5)

where wmin and wmax are force-based dynamic weights for Kmin and Kmax. For
each input, a new pair of force-based weights is computed and applied. Fcur,
Fmin, Fmax are force respectively corresponding to Kcur, Kmin and Kmax.

4 Experiments

4.1 Implementation and Setup

Our experiments are implemented based on PyTorch on a RTX 4090 GPU. We
employ the ReduceLROnPlateau [13] policy to automatically adjust the learning
rate and utilize RMSprop [11] as the optimizer. Momentum, weight decay and
batch size are set to 0.9, 1e-8 and 4 for all experiments, respectively. We set
the maximum number of epochs as 120 for experiments. For data augmentation,
we apply random horizontal and vertical flip, random intensity transformation,
random translation, random rotation for input images and key frames for all
experiments. All images are resized to 256x256. We also utilize Torchio [20] to
add random bias fields and random noise to input images and key frames. To
address the issue of class imbalance, we employed weighted cross-entropy loss
with weights of 1, 30.7, and 23.1 for background, arteries and veins, respectively.
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Table 1. Comparison results of different methods on the Mus-V dataset.

Method mIoU(%)↑ Dice Coefficient↑ FLOPs(M)↓
Swin-unet[4] 68.36 0.7968 0.774×104

UNet[21] 69.23 0.8140 4.019 ×104

Transunet[5] 74.38 0.8499 3.225×104

FG-Swin-unet 69.56 0.8033 1.855×104

FG-UNet 72.02 0.8280 8.016×104

FG-Transunet 75.63 0.8547 8.867×104

Table 2. Ablation study results. The w/o KFS represents that force-driven key frame
selection is removed and two frames temporally before the current frame are selected
as key frames. The w/o FBW means that force-based dynamic weights are removed.

Method mIoU(%)↑ Dice Coefficient↑
UNet[21] 69.23 0.8140
FG-UNet w/o KFS&FBW 70.22 0.8205
FG-UNet w/o FBW 71.36 0.8244
FG-UNet 72.02 0.8280

4.2 Comparison with State-of-the-Arts

We conduct comprehensive experiments by applying force sensing guidance to
three different U-shaped networks, namely UNet, Swin-unet and Transunet. The
force-guided attention module is inserted as a “neck” between the encoder and
the decoder of three basic networks. For Transunet, we choose to use the R50-
Vit-B16 version. Table 1 displays the performance metrics and FLOPs of all
the methods. The network applied with force sensing guidance is named with
the prefix “FG” followed by the network name. In conclusion, Force Sensing
Guided TranUnet (FG-Transunet) achieves the highest performance, attaining
75.63% mIoU and 0.8547 dice coefficient. Additionally, the application of force
sensing guidance results in performance enhancements of 1.2%, 2.79% and 1.25%
mIoU in Swin-UNet, UNet and Transunet, respectively. Qualitative results are
presented in Fig. 3

4.3 Ablation Studies

We conduct several ablation experiments to validate the effectiveness of all the
components of the proposed approach, utilizing UNet [21] as our baseline. To
save computational resources and training time, we also exploit Force Sensing
Guided UNet (FG-UNet) as the base model for all ablation experiments.

To validate the effectiveness of the force-based dynamic weights, we con-
ducted experiments by removing the weights multiplication. The experimental
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Fig. 3. Qualitative results. The results demonstrate that integrating force sensing guid-
ance effectively enhances the performance of three baseline networks. Specifically, our
method improves the model’s ability to differentiate between arteries (red) and veins
(blue), and ability to segment small veins.

results are shown in Table 2. After removing the force-based weights, the mIoU
decreases by 0.66%.

To investigate the effect of the proposed force-driven key frame selection
strategy, we conduct an experiment that simply selecting two frames preceding
the current frame in time as key frames. The results are displayed in Table 2.
The performance has decreased significantly in the aspect of both mIoU and dice
coefficient after removing the key frame selection. The mIoU decreases by 1.14%
and the dice coefficient decreases by 0.0039.

5 Conclusion

In this study, we introduced a pioneering force sensing guided approach for
ultrasound artery-vein segmentation. Our method includes innovative compo-
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nents such as force-driven key frames selection, force-guided attention module
and force-based dynamic weights. Extensive experiments demonstrated that our
proposed approach led to notable performance enhancements across multiple U-
shaped networks. Furthermore, we presented Mus-V, the first publicly available
ultrasound artery-vein segmentation dataset including images and force. Future
directions include further optimizing the performance by exploring additional
methodologies, as well as expanding the capacity of Mus-V.
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