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Abstract. Selecting the appropriate power for intraocular lenses (IOLs)
is crucial for the success of cataract surgeries. Traditionally, ophthalmol-
ogists rely on manually designed formulas like "Barrett" and "Hoffer Q"
to calculate IOL power. However, these methods exhibit limited accu-
racy since they primarily focus on biometric data such as axial length
and corneal curvature, overlooking the rich details in preoperative images
that reveal the eye’s internal anatomy. In this study, we propose a novel
deep learning model that leverages multi-modal information for accurate
IOL power calculation. In particular, to address the low information den-
sity in optical coherence tomography (OCT) images (i.e., most regions
are with zero pixel values), we introduce a cross-layer attention module
to take full advantage of hierarchical contextual information to extract
comprehensive anatomical features. Additionally, the IOL powers given
by traditional formulas are taken as prior knowledge to benefit model
training. The proposed method is evaluated on a self-collected dataset
consisting of 174 samples and compared with other approaches. The
experimental results demonstrate that our approach significantly sur-
passes competing methods, achieving a mean absolute error of just 0.367
diopters (D). Impressively, the percentage of eyes with a prediction error
within ± 0.5 D achieves 84.1%. Furthermore, extensive ablation studies
are conducted to validate each component’s contribution and identify the
biometric parameters most relevant to accurate IOL power calculation.
Codes will be available at https://github.com/liyiersan/IOL.

Keywords: Intraocular lens power calculation · Multi-modal learning ·
Attention mechanism.

1 Introduction

Cataracts are the leading cause of blindness and vision impairment globally,
responsible for approximately 45% of blindness in adults over the age of 50 [18].
Currently, cataract surgery stands as the cornerstone of treatment, in which
choosing a proper refractive power of an intraocular lens (IOL) plays a pivotal
role in determining the outcome and significantly impacts the postoperative
visual acuity [7].

https://github.com/liyiersan/IOL
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Fig. 1. Illustration of dumb windows, which contain no valid information. The red and
blue boxes are sliding windows with different kernel sizes, and the areas within green
are informative regions.

Over the past decades, many manually designed formulas such as Barrett
Universal [2], Hoffer Q [9], Holladay [10], and SRK/T [15] have been developed
to calculate IOL power. Despite widespread use, these formulas are still far from
being perfect due to certain limitations even in normal unoperated eyes [16].
Firstly, they mainly focus on biometric measurements such as axial length (AL)
and corneal curvature, neglecting the imaging information. Preoperative multi-
view optical coherence tomography (OCT) images, for instance, can provide de-
tailed insights into the retinal thickness, lens position, anterior chamber depth,
and other anatomical structures, which are vital for accurate calculations [1].
Secondly, the reliance of these formulas on calculating the effective lens position
(ELP) introduces variability, as different formulas estimate ELP diversely, mak-
ing them suitable only for specific eye types. For example, Hoffer Q is best for
short AL (< 22.0 mm) and SRK/T for long AL (> 26.0 mm), underscoring the
need for more versatile approaches. Recently, some computer-aided approaches
[22,3,12,13] have been proposed, but they still focus on single-modal data and
are suboptimal because of simplistic model designs, e.g., basic multi-layer per-
ceptrons (MLPs). These easy models may fail to learn complex patterns within
multi-modal data.

In this paper, we propose a new deep learning framework that takes full ad-
vantage of multi-modal data for accurate and reliable IOL power calculation.
The framework consists of a dual-branch encoder that takes both preoperative
multi-view OCT images and biometric parameters as input, a feature fusion
network for complementary information aggregation, and a predictive head for
power calculation. Especially different from existing methods, we concentrate on
imaging data. Notably, as shown in Fig. 1, OCT images display low information
density, which is caused by the numerous zero-value pixels in background areas
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and affects the efficiency of feature extraction. To address this, we introduce a
cross-layer attention (CLA) module to better aggregate contextual information
among different layers. For biometric data, we incorporate the calculated result
using classical formulas as prior knowledge. Moreover, an auxiliary prediction
loss is introduced in the biometric encoder to benefit model training. The en-
hanced features from both multi-view OCT images and biometric data are then
concatenated, and processed through the fusion network with the effective chan-
nel attention (ECA) module for multi-modal information fusion. Finally, they
are fed into the predictive network for precise IOL power calculation.

The main contributions of this work are as follows: (1) We develop a pioneer-
ing deep learning approach that exploits multi-modal data for end-to-end IOL
power calculation, eliminating the necessity for ELP estimation. To the best of
our knowledge, this is the first application of multi-modal data in this domain.
(2) The CLA module is proposed to effectively harness hierarchical correlations
within OCT images. Moreover, we utilize prior knowledge provided by conven-
tional formulas and introduce an auxiliary prediction loss for advanced biometric
data encoding. (3) Experimental results show that our approach outperforms
existing formula-based and machine learning-based methods by a large margin,
demonstrating the potential for accurate and reliable IOL power calculation in
clinical practice. Importantly, we have also identified key biometric parameters
for IOL power calculation, which can provide critical insights for future formula
development.

2 Methodology

2.1 Framework Overview

As can be seen in Fig. 2, the proposed framework is composed of three main parts:
a dual-branch encoder for representation learning, a fusion network for multi-
modal information integration, and MLPs for power prediction. For the image
encoder, we employ the RepLKNet [4] as the backbone for its large kernel size
and incorporate the CLA module for improved feature extraction. For biometric
data encoding, an MLP with prediction loss is adopted. After that, features from
both imaging and biometric data are then concatenated and fed into the fusion
network, in which effective channel attention (ECA) [20] is used to explore the
multi-modal correlations. Finally, the IOL power prediction is made through
fully connected (FC) layers.

2.2 Dual-branch Encoder

Low Information Density In OCT images, as depicted in Fig. 1, a significant
portion of the pixels are part of the background and have zero values. When
applying convolutions on sliding windows, this results in windows that are com-
pletely zero-filled, contributing minimal informative value. We refer to these
zero-value windows as "dumb windows" and describe the prevalent zero-value
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Fig. 2. Pipeline of the proposed framework. The two branches in encoders process
biometric data and images, respectively. ’C’ in the circle means channel-wise feature
concatenation. The prediction head for the biometric encoder will be dropped and only
the final prediction will be preserved during inference.

pixels as "low information density". These dumb windows may have negative
impacts on backward gradients as they do not provide meaningful direction for
parameter updates. Specifically, ReLU activation often results in zero responses
to dumb windows and this may affect feature aggregation when pooling. Mean-
while, low information density makes it difficult for models to obtain meaningful
representations.

Large Kernel Backbone To reduce dumb windows, a larger kernel size can
be a feasible solution since it enables the inclusion of more non-zero pixels in
each window. When adding the kernel size from 3× 3 to 31× 31, the dumb win-
dows decrease from 77% to 52%. Besides, a larger convolutional kernel implies a
broader receptive field, allowing the model to access more information. This aids
in accurately locating anatomical structures and exploring details within the im-
ages. Therefore, we adopt RepLKNet-31B [4] as the image backbone considering
its high performance with depth-wise large kernel design.

Cross-layer Attention Module However, while effective against dumb win-
dows, the large kernel design doesn’t address the core issue of low information
density in images. This characteristic is inherent to the image itself and remains
unaffected by the model choice. That is, even with a large-kernel design, the
extracted features may include many irrelevant characteristics, impacting the
model’s performance. In such a situation, we introduce the cross-layer attention
(CLA) module to suppress the unnecessary features. Assuming two successive
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stages with features Fi and Fi+1, Fi contains detailed structural information
from a shallower layer while Fi+1 from a deeper layer holds higher-level features.
Therefore, Fi is utilized to generate the spatial attention weights on Fi+1 to
enhance focus on relevant details and improve feature integration. A 3× 3 con-
volution is introduced to reduce the spatial size of Fi to match Fi+1 as Eq. (1).
Detailed architectures of CLA can be found in the supplementary file (Fig.1).

Fin = f3×3(Fi)

Ms = Sigmoid
(
f7×7

([
Avg(Fin), f

1×1(Fin),Max(Fin)
]))

Mout = Fi+1 + Fi+1 ⊙Ms

(1)

where fk×k represents the convolution with a filter size of k × k and ⊙ means
element-wise product. Avg and Max are average and max pooling on channels.

Biometric Encoder For biometric data encoding, we take biometric data and
prior results (i.e., power calculated by traditional formulas) as input and apply
an MLP to extract features. Besides, an independent prediction head is intro-
duced to guide the biometric encoding as Eq. (2).

Lbio = LMSE(bio_preds, gts) (2)

where LMSE is the mean square error loss between the predicted IOL power
using biometric features and the ground truth.

2.3 Fusion Network

The image features and biometric features are then concatenated to form com-
prehensive representations of multi-modal data. After that, they are passed
through a projector, further refining the multi-modal representations and de-
creasing the dimension. To effectively explore the correlations among channels,
effective channel attention (ECA) [20] is employed, whose details are shown in
the supplementary file (Fig.2). This strategy enables the model to focus on the
most informative features by dynamically adjusting the importance of each chan-
nel based on the learned correlations. The final power prediction is given by the
prediction head, which is a fully connected layer.

The model is trained end-to-end with weighted prediction loss as Eq. (3).

Loss = LMSE(final_preds, gts) + αLbio (3)

where LMSE is the mean square error loss between the final prediction and the
ground truth. α is a hyper-parameter and set to 0.5 by default.

2.4 Implemantation Details

All experiments are implemented with Pytorch on 8× RTX 4090 GPUs. The
images are resized to 512 × 512 and center cropped to 448 × 448. We adopt
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Adam as the optimizer with an initial learning rate of 0.001 and β1 = 0.9,
β2 = 0.99. The mini-batch size is set to 16. The models are trained for 100
epochs, and the learning rate will decay by 0.1 every 20 epochs. Besides, the
dataset is randomly split to 80% for training and 20% for testing with 5-fold
cross-validation to produce more solid results.

3 Experiments

3.1 Datasets and Evaluation Metrics

We have collected a multi-modal cataract dataset from a local eye hospital,
comprising 174 eyes from 117 patients. This dataset encompasses OCT images
with 16 different views of 2D scans acquired from the CASIA2 device and detailed
biometric measurements. These measurements contain axial length (AL), corneal
curvature (K1 and K2), anterior chamber depth (ACD), lens thickness (LT), and
white-to-white (WTW) distance, as well as demographic information, including
age, gender, and preoperative visual acuity. The actual IOL power (ground truth)
is determined by 3 experienced ophthalmologists through an analysis of one-
month post-surgery optometry refraction and the specific IOL power used in
cataract surgery. We employ three metrics for evaluation following [3,19]: Mean
Absolute Error (MAE), Median Absolute Error (MedAE), and overall prediction
accuracy. For simplicity, a prediction is considered accurate if the MAE falls
within a range of ± 0.5 Diopters (D). The 0.5 is chosen for two reasons: 1)
Predictions with MAE ≤ 0.5 D are deemed clinically acceptable [3,19], and
accuracy reflects the proportion of clinically useful predictions. 2) The ground
truth in our dataset is accurate to 0.5 D increments.

Table 1. Quantitative prediction results on the collected dataset. AutoML means the
AI-driven models using autogluon. MMT represents multi-modal transformers.

Type Methods MAE (↓) MedAE (↓) Accuracy (↑)

Formulas

Barrett Universal [2] 0.616± 0.267 0.406± 0.062 0.618± 0.077
Hoffer Q [9] 0.932± 0.096 0.545± 0.043 0.447± 0.043
Holladay [10] 0.508± 0.067 0.452± 0.049 0.547± 0.080
SRK/T [15] 0.547± 0.074 0.466± 0.101 0.517± 0.061

AutoML Tabular [5] 0.705± 0.281 0.457± 0.069 0.682± 0.063
MultiModal [17] 0.942± 0.021 0.542± 0.062 0.452± 0.053

MMT
CLIP [14] 1.386± 0.245 1.325± 0.083 0.230± 0.096
ViLT [11] 1.172± 0.413 1.045± 0.063 0.266± 0.095

BEiT-3 [21] 2.727± 0.188 2.005± 0.124 0.180± 0.040

Ours

Full (image + text) 0.367± 0.040 0.333± 0.086 0.841± 0.052
Variant-1 (image only) 0.459± 0.039 0.373± 0.055 0.706± 0.042

Variant-2 (bio data only) 0.496± 0.054 0.417± 0.059 0.671± 0.051
MLP (no prior) 0.542± 0.053 0.436± 0.071 0.624± 0.073
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3.2 Quantitative Performance

We have compared our approach against traditional formulas (Barrett Universal
[2], Hoffer Q [9], Holladay [10], and SRK/T [15]) and AI-driven models using
autogluon. The autogluon models are TabularPredictor [5] and MultiModalPre-
dictor [17] with "good_quality" and "high_quality", respectively. Besides, the
emerging multi-modal transformers (MMTs) are also finetuned for IOL power
prediction, including CLIP [14], ViLT [11], and BEiT-3 [21]. To further validate
the efficacy, we also design two variants of our method: one (variant-1) employing
only the biometric encoder and the other (variant-2) utilizing solely the image
encoder. These variants are compared against a naive MLP prediction model
without prior information to provide a comprehensive assessment.

From Table 1, it can be seen that our approach achieves the best performance
with a significant margin over other methods. The naive MLP model achieves
the worst performance in all variants, indicating the insufficiency of simple mod-
els to capture the intricate relationships. Variant-1 shows better performance
than naive MLP, which demonstrates the effectiveness of introducing calculated
powers by traditional formulas. Variant-2 secures performance closely trailing
our method, underscoring the significant role of images. Interestingly, we find
that TabularPredictor outperforms MultiModalPredictor. The primary reason
for this is that the multi-view OCT images should be carefully treated as the
numerous zero-value pixels in background areas may act as noise to representa-
tion learning. In addition, all multi-modal transformers perform worse on IOL
power prediction. This may be attributed to three reasons: 1) Low information
density results in many dump patches, which may be computationally invalid
in optimizing the parameters of bottom transformer layers [6]. 2) The text en-
coders in MMTs trained with natural language texts may not be as effective
when applied to biomedical data. 3) Transformers can easily overfit small-scale
data since they are more data-hungry than CNNs.

Table 2. Ablation study results using multi-modal data. ’w/o’ means omitting the
corresponding module.

Model MAE (↓) MedAE (↓) Accuracy (↑)
Full 0.367± 0.040 0.333± 0.086 0.841± 0.052

ResNet-50 [8] Backbone 0.395± 0.064 0.367± 0.074 0.771± 0.034
ResNet-101 [8] Backbone 0.472± 0.067 0.453± 0.066 0.653± 0.044
ResNet-152 [8] Backbone 0.583± 0.052 0.492± 0.041 0.582± 0.040

w/o CLA 0.426± 0.061 0.423± 0.067 0.735± 0.087
w/o ECA 0.397± 0.046 0.382± 0.087 0.784± 0.033

w/o auxiliary loss 0.388± 0.051 0.364± 0.054 0.806± 0.062
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Fig. 3. Visualization of feature importance. The train and test mean that the impor-
tance is calculated in the train dataset and test dataset, respectively.

3.3 Ablation Study

Effectiveness of Each Component The ablation studies are conducted to
verify the contribution of each component and the results are listed in Table 2.
When replacing the large kernel design with ResNet-50 [8], the overall accuracy
drops from 84% to 77%. Additionally, the ResNet backbones appear to be over-
fitting on the collected dataset like MMTs, as indicated by the performance drop
observed with ResNet-101 and ResNet-152. Our employed RepLKNet backbone
takes advantage of a large-kernel design, which can effectively capture the infor-
mative regions as shown in the supplementary file (Fig.3). The CLA module has
a more significant impact on performance compared to the ECA module, as it
is highly related to the quality of feature extraction. As for biometric auxiliary
prediction loss, it has a slight influence on model performance.

Importance of Biometric Data To identify the most relevant biometric pa-
rameters for IOL power calculation, we compare their feature importance using
the naive MLP without prior input. The importance is defined as the perfor-
mance drop when one column’s values are randomly shuffled3 across rows dur-
ing inference. Through the results shown in Fig. 3, we find that AL, K2, K1,
and ACD emerge as essential elements, exerting a great influence. Conversely,
eye type is identified as having a negligible effect on power predictions. It is
worth noting that the results uncover a positive correlation between age and
performance, a factor not fully appreciated in traditional formulas.

3 https://explained.ai/rf-importance/#4

https://explained.ai/rf-importance/#4
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4 Conlusion

In conclusion, we present an end-to-end deep learning framework that signif-
icantly advances the accuracy of IOL power calculation without ELP estima-
tion. Comprehensive and complementary representations can be obtained by
ingeniously leveraging preoperative multi-view OCT images and biometric mea-
surements. The integration of the CLA modules enables precise exploitation of
cross-layer correlations in OCT images, effectively overcoming challenges of low
information density. Additionally, we employ ECA modules for effective multi-
modal information aggregation. Extensive experiments have proved the effective-
ness and superiority of our method. We also analyze the biometric parameters
most relevant to IOL power calculation, offering invaluable insights for the de-
velopment of future calculation formulas.
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