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Abstract. Medical foundation models are gaining prominence in the
medical community for their ability to derive general representations
from extensive collections of medical image-text pairs. Recent research
indicates that these models are susceptible to backdoor attacks, which
allow them to classify clean images accurately but fail when specific
triggers are introduced. However, traditional backdoor attacks necessi-
tate a considerable amount of additional data to maliciously pre-train a
model. This requirement is often impractical in medical imaging appli-
cations due to the usual scarcity of data. Inspired by the latest develop-
ments in learnable prompts, this work introduces a method to embed a
backdoor into the medical foundation model during the prompt learning
phase. By incorporating learnable prompts within the text encoder and
introducing imperceptible learnable noise trigger to the input images,
we exploit the full capabilities of the medical foundation models (Med-
FM). Our method requires only a minimal subset of data to adjust the
text prompts for downstream tasks, enabling the creation of an effec-
tive backdoor attack. Through extensive experiments with four medical
foundation models, each pre-trained on different modalities and evalu-
ated across six downstream datasets, we demonstrate the efficacy of our
approach. Code is available at https://github.com/asif-hanif/baple.
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1 Introduction

In recent years, multimodal medical foundation models (Med-FMs) have gained
remarkable success across a multitude of medical imaging applications in pathol-
ogy [8,9], X-ray interpretation [22], and radiology [23]. These models leverage
massive datasets during pre-training to identify intricate patterns in visual and
textual data through contrastive training and subsequently adapted to various
downstream tasks for transfer learning [2]. However, recent studies have shown
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Fig. 1. Comparative analysis of BAPLe against baseline methods. BAPLe seamlessly
integrates natural-looking triggers pointed by red arrow commonly found in medical
images, along with imperceptible learnable noise distributed across the entire image.
Naïve patch-based backdoor attack, BadNets [7], places a perceptible noisy patch as
a trigger. FIBA [5] is a medical image-specific attack that manipulates the image fre-
quency, altering the contrast. Success and failure of backdoor attacks are marked by
! and #, respectively.

that FMs are vulnerable to adversarial attacks, raising concerns about the reli-
ability and security of these widely adopted models [19,3].

Among the various adversarial threats faced by FMs [1], backdoor attacks
pose a particularly insidious challenge [13,5]. These attacks involve an adver-
sary deliberately poisoning a dataset to compromise the behavior of the target
model. After training on the poisoned dataset, the compromised model will clas-
sify any input containing a specific trigger pattern as the adversary’s desired
target label while still maintaining accuracy on a clean dataset. Recent back-
door attacks on multimodal FMs typically necessitate retraining the model from
scratch with poisoned data [4], a process that demands access to large training
datasets and typically substantial computational resources. This becomes
particularly challenging in medical imaging applications due to data scarcity and
privacy concerns, thereby significantly reducing the threat posed by backdoor
attacks.

Meanwhile, there is an increasing trend in adapting Med-FMs to down-
stream tasks with minimal parameter tuning. In this context, prompt tuning
has emerged as one of the promising methods [14]. Unlike conventional full-
model tuning, prompt tuning simplifies the adaptation process by only requiring
adjustments to the embeddings of prompt tokens based on a limited set of input
samples of downstream dataset [28]. This prompting approach is especially ad-
vantageous in medical imaging applications, where data scarcity often impedes
full model fine-tuning. Notably, prompt-tuning has demonstrated performance
on par with or surpassing that of full fine-tuning in data-limited scenarios, gar-
nering attention from the medical community. However, the efficiency of prompt
tuning, while beneficial, raises a critical question: Does prompt tuning, with
its lower data and learnable parameter requirements, inherently make
it more difficult to implement backdoor attacks? This concern highlights
the need to investigate the security of prompt tuning strategies in Med-FMs,
especially given their growing application in safety-critical medical domains.
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In this paper, for the first time, we show that Med-FMs are susceptible to
backdoor attacks during the prompt learning phase, challenging the initial be-
lief that their minimal data and learnable parameter requirements naturally
offer protection. Our proposed method, BAPLe, introduces a small set of learn-
able prompts into the Med-FM input space. These prompts, optimized with a
poisoned dataset, efficiently embed backdoors while maintaining the FM’s back-
bone frozen, thus eliminating the need for large amounts of data or significant
computational resources. Extensive experiments across four publicly available
Med-FMs and six downstream datasets of different modalities demonstrate the
efficacy of BAPLe. In a few-shot setting with only 8 poisoned samples out of
288 in the Kather dataset, we achieve a backdoor success rate surpassing 90%
without compromising the model’s accuracy on clean data. Remarkably, this ef-
ficiency is achieved by modifying only 0.1% of the FM parameters, leading to a
33%−35% reduction in GPU usage compared to traditional fine-tuning methods.

2 Related Work

Medical Foundation Models: Med-FMs, particularly large vision language
models, have significantly improved performance on several medical imaging
tasks through the acquisition of general representations and the subsequent
transfer of this knowledge to downstream tasks [27]. Despite the introduction of a
diverse range of Med-FMs for various modalities such as X-ray [22], histopathol-
ogy [8,9], and retinal imaging [20], a thorough assessment of their resilience to
backdoor attacks has not yet been investigated.
Backdoor Attacks: In backdoor attacks, adversaries deliberately poison a
training dataset to manipulate the target model’s behavior [7,13]. Such attacks
result in the model misclassifying inputs containing a specific trigger as the
intended target label yet retaining accuracy on clean data. Despite their preva-
lent use in both unimodal and multimodal models for natural images [15,4],
backdoor attacks have recently been investigated in unimodal medical imaging
models [5,17,10]. However, the extension of these attacks to the widely adopted
Med-FMs, especially in data-scarce scenarios, remains unexplored.
Prompt Learning: Prompt learning has emerged as a viable alternative to tra-
ditional finetuning of foundation models, facilitating their adaptation to down-
stream tasks without necessitating the retraining of existing parameters [26,14,21].
This method enhances a pre-trained model by introducing a minimal set of new,
learnable embeddings at the input stage, known as prompt tokens [26]. Its ef-
ficiency, characterized by using fewer parameters and achieving faster conver-
gence, has made prompt learning especially appealing for adapting Med-FMs.
It has proven highly effective in scenarios with scarce data, making it particu-
larly relevant for medical applications [24,26]. Prompt learning holds significant
relevance for medical applications and is demonstrably effective in data-scarce
scenarios [24,26]. While existing research primarily leverages prompt tuning for
downstream tasks, our work uniquely reveals the vulnerability of prompt tuning
to backdoor attacks within the context of data-scarce medical applications.
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3 Method

3.1 Threat Model

Attacker’s Objective: The attacker’s objective is to add a very small percent-
age of poisoned images to the downstream dataset so that while the Med-FM
behaves normally with benign inputs, it misclassifies any input with the trigger
as the attacker’s chosen target class, in a targeted-attack scenario.
Attacker’s Knowledge and Capabilities: Consistent with the prior works
in backdoor attacks [5], we assume the attacker can poison a portion of the
downstream training data and fully access the pre-trained Med-FMs. Diverging
from previous works, we introduce two more constraints, reflecting the unique
challenges of medical applications: i) the attacker only has access to a limited
number of labeled samples due to the inherent data scarcity in the medical field,
ii) the attacker is constrained by limited computational resources that restrict its
ability to update the extensive parameters of the Med-FM’s backbone.

These constraints are particularly pertinent in medical imaging, where effi-
cient adaptation techniques for Med-FMs have demonstrated the feasibility of
such threats. For instance, an attacker could serve as a malicious service provider
(MSP) to hospitals, accessing Med-FMs and a small portion of the downstream
dataset. In this situation, a hospital might submit a few samples to the MSP,
requesting a tailored prompt to deploy the Med-FM for a specific task. Conse-
quently, the MSP can train a backdoored prompt and release it to the hospital.

3.2 Preliminaries

Backdoor Attacks Formulation: In a supervised medical classification task,
the objective is to train a classifier f cθ : X → Y that maps a clean input image
x ∈ X to a label y ∈ Y. Parameters θ are learned from a training dataset D =
{xi, yi}Ni=1 where xi ∈ X and yi ∈ Y. In a typical backdoor attack, the training
dataset D is split into clean Dc and poison subsets Dp, where |Dp| � N . In Dp,
each sample (x, y) is transformed into a backdoor sample (B(x), η(y)), where
B : X → X is the backdoor injection function and η denotes the target label
function. During the training phase of backdoor attacks, the victim classifier fθ
is trained on a mix of the clean dataset Dc and the poisson dataset Dp. After
training, fθ behaves similarly on clean input x as the original classifier f cθ , yet
alters its prediction for the backdoor image B(x) to the target class η(y), i.e.
fθ(x) = y and fθ(B(x)) = η(y). Formally, this task can be formulated as the
following objective function:

minimize
θ

∑
(x,y)∈Dc

λc · L(fθ(x), y) +
∑

(x,y)∈Dp

λp · L(fθ(B(x)), η(y)), (1)

where L(·) denotes the cross-entropy loss, and λc and λp are hyperparameters
adjusting the balance of clean and poison data loss contributions.
Zero-shot Classification for Med-FM: Since Med-FMs, particularly VLMs,
are pre-trained to align images with corresponding textual descriptions, they are
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Fig. 2. Overview of the Proposed Approach: BAPLe crafts effective backdoor
attacks using learnable prompts while keeping the vision and text encoders fixed. It
exploits the multimodal nature of medical foundation models by integrating learnable
prompts into the text encoder alongside imperceptible noise trigger in the input images.

inherently suited for zero-shot classification tasks. We denote the pre-trained
Med-VLM as fθ = {f

I
, f

T
}, whereas f

I
and f

T
are image and text encoders,

respectively. For classification in zero-shot scenario, the image x is first passed
to the image encoder f

I
, resulting in a d−dimensional feature vector f

I
(x) ∈ Rd.

Similarly, on the text encoder side, each class label yi ∈ {y1, y2, . . . , yC} is
wrapped within the class-specific text template, such as ti = “histopathology
patch of {CLASS yi}”. These text prompts t = {t1, t2, . . . , tC} are fed to the
text encoder f

T
, yielding the text features f

T
(t) ∈ RC×d. The relationship be-

tween the image’s feature vector and the text features is quantified using cosine
similarity, sim(fI(x), fT (t)), to evaluate the image’s alignment with each class.
The similarity measure is transformed into a probability distribution over the
classes using a softmax function i.e., p(ŷ|x) = softmax(sim(f

I
(x), f

T
(t))).

A naïve approach to conduct backdoor attacks on a pre-trained Med-FM is to
fine-tune the entire model using a poisoned dataset [4]. However, this approach
requires significant computational resources and extensive downstream datasets,
which are not always feasible given the attacker’s limitations (see Sec. 3.1).

3.3 BAPLe - Backdoor Attack using Prompt Learning

Overview: Our proposed backdoor attack method, BAPLe, depicted in Fig. 2,
is crafted to efficiently and effectively compromise Med-VLMs by exploiting their
multimodal nature. For efficiency, we incorporate a small number of learnable
parameters (prompts) into the input space of the Med-FM text encoder while the
backbone remains fixed during the training with a poisoned downstream dataset.
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The prompt-based strategy offers a significant advantage for backdoor attacks in
a few-shot setting, as it precisely tailors the input space, enabling the Med-FM to
leverage its rich knowledge to data-scarce tasks without necessitating extensive
retraining or the acquisition of large medical datasets. To further enhance attack
effectiveness, we add imperceptible and learnable noise as a backdoor trigger into
the input images. This substantially enhances the FM sensitivity to the backdoor
activation in a subtle manner. By leveraging learnable prompts within the text
encoder and introducing imperceptible noise trigger to the input images, we
harness the full spectrum of the Med-FM capabilities. Next, we formally present
our approach.
BAPLe Formulation: Zero-shot inference in Med-FM relies on fixed, hand-
engineered text prompts. BAPLe, however, employs a prompt learning setup that
integrates a small set of learnable prompt token embeddings, P, with class names,
forming class-specific inputs t = {t1, t2, . . . , tC} where ti = {P, yi}. Denoting the
model’s prediction scores on clean image with fθ(x) = sim(fI(x), fT (t)) ∈ RC ,
BAPLe optimizes the following objective function:

minimize
P , δ

∑
(x,y)∈Dc

λc · L
(
fθ(x), y

)
+

∑
(x,y)∈Dp

λp · L
(
fθ(B(x)), η(y)

)
, (2)

s.t. ‖δ‖∞ ≤ ε, B(x) = (x+ δ)⊕ p,

where δ represents the imperceptible backdoor trigger noise, ε is perturbation
budget, p is the backdoor patch that can be a logo or symbol, B the backdoor
injection function, and ⊕ represents an operation that combines the original
image with the backdoor patch trigger. It must be noted that both vision and
text encoders are kept in frozen state while optimizing the objective in Eq. 2.
BAPLe adapts both vision and text input spaces for the injection of the backdoor
during prompt learning, increasing the method’s efficacy. Refer to Algorithm 1
and Fig. 1 & Fig. 2 in Appendix for detailed steps of BAPLe approach and
visualizations of learnable noise trigger respectively.

4 Experiments and Results

We validate our approach using four Med-FMs: MedCLIP [22], BioMedCLIP
[25], PLIP [8], and QuiltNet [9], and across six downstream datasets: COVID-X
[18], RSNA18 [16], MIMIC-CXR-JPG [11], KatherColon [12], PanNuke [6], and
DigestPath [6]. The first three datasets include chest X-ray images, while the
other three are comprised of histopathology images. MedCLIP is pre-trained on
chest X-ray images, BioMedCLIP on medical image-caption pairs, and PLIP and
QuiltNet are trained on histopathology datasets. We run our experiments on a
single NVIDIA RTX A6000 GPU with 48GB memory.
Baseline Methods and Attack Settings: Our baselines are BadNets [7],
WaNet [15], and FIBA [5], with FIBA being specifically tailored for medical
images. We evaluated two variants of each method: one involving fine-tuning
of the Med-FM model with the attack and another integrating the baseline’s
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Table 1. Comparison between the proposed backdoor attack method, BAPLe, and
various baseline methods in terms of clean accuracy (CA) and backdoor accuracy (BA)
across four models and six datasets. The baseline methods include BadNets [7], WaNet
[15], and FIBA [5]. The symbol © denotes that attack is performed with prompt tuning
while keeping the model frozen, while o denotes the attack is performed using fine-
tuning the full model. For both categories, the number of shots are set to 32.

Model → MedCLIP BioMedCLIP

Dataset → COVID RSNA18 MIMIC COVID RSNA18 MIMIC
Method ↓ CA BA CA BA CA BA CA BA CA BA CA BA

Clean 0.823 - 0.525 - 0.359 - 0.903 - 0.470 - 0.426 -
BadNets

o
0.817 0.574 0.472 0.521 0.314 0.765 0.915 0.627 0.464 0.830 0.322 0.945

WaNet
o

0.835 0.582 0.622 0.421 0.241 0.410 0.852 0.812 0.451 0.653 0.419 0.785
FIBA

o
0.812 0.566 0.485 0.535 0.296 0.810 0.916 0.638 0.345 0.566 0.310 0.929

Clean 0.822 - 0.603 - 0.585 - 0.843 - 0.582 - 0.351 -
BadNets

©
0.820 0.510 0.619 0.373 0.559 0.284 0.845 0.975 0.632 0.942 0.373 1.000

WaNet
©

0.831 0.470 0.612 0.319 0.587 0.266 0.839 0.599 0.587 0.510 0.334 0.599
FIBA

©
0.820 0.511 0.623 0.360 0.562 0.292 0.856 0.729 0.630 0.614 0.373 0.722

BAPLE(ours) 0.805 0.994 0.610 0.965 0.472 0.991 0.841 1.000 0.620 0.998 0.368 0.996

Model → PLIP QuiltNet

Dataset → Kather PanNuke DigestPath Kather PanNuke DigestPath
Method ↓ CA BA CA BA CA BA CA BA CA BA CA BA

Clean 0.939 - 0.845 - 0.887 - 0.936 - 0.866 - 0.872 -
BadNets

o
0.935 0.893 0.850 0.682 0.891 0.778 0.938 0.839 0.860 0.638 0.878 0.688

WaNet
o

0.916 0.394 0.859 0.663 0.881 0.554 0.929 0.333 0.840 0.567 0.917 0.550
FIBA

o
0.903 0.367 0.581 0.717 0.673 0.685 0.917 0.404 0.548 0.743 0.735 0.655

Clean 0.908 - 0.811 - 0.920 - 0.899 - 0.829 - 0.906 -
BadNets

©
0.903 0.601 0.799 0.748 0.922 0.623 0.898 0.151 0.699 0.757 0.874 0.518

WaNet
©

0.910 0.243 0.851 0.591 0.924 0.405 0.926 0.185 0.834 0.427 0.915 0.492
FIBA

©
0.901 0.303 0.795 0.615 0.921 0.553 0.897 0.174 0.711 0.597 0.862 0.547

BAPLE(ours) 0.916 0.987 0.820 0.952 0.904 0.966 0.908 0.904 0.824 0.918 0.897 0.948

backdoor trigger function into prompt-tuning approach. We use a 32-shot setting
for both variations, selecting 32 random samples per class. We use a batch size of
16 and a learning rate of 5×10−5 for full fine-tuning and 0.02 for the prompting
method. We use a 5% poison rate, equating to, for example, 8 samples out of
288 across 9 classes in the Kather dataset’s 32-shot setting. We use ε = 8/255
for learnable noise and set the backdoor patch size to 24× 24, positioning it in
the bottom-left corner. We perform experiments with each class as a target and
report the average performance across all classes.
Evaluation Metrics: We use Clean Accuracy (CA) and Backdoor Accuracy
(BA). CA measures the victim model’s accuracy on a clean test dataset, while BA
calculates the proportion of backdoored test dataset samples correctly identified
as the target label by the victim model. We also report the accuracy of the clean
model trained on clean data without poisoned samples, highlighted as Clean.
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Table 2. Impact of (a) target class, (b) patch location, (c) noise strength ε on the scale
of [0, 255], (d) poison ratio % on clean accuracy (CA) and backdoor accuracy (BA).

Target Class CA BA

Clean 0.908 -
0 0.913 0.999
1 0.923 0.993
2 0.926 0.998
3 0.913 0.987
4 0.899 0.989
5 0.918 0.980
6 0.909 0.983
7 0.916 0.982
8 0.925 0.969

(a)

Patch Location CA BA

Clean 0.908 -
top-left 0.891 0.971
top-center 0.894 0.975
top-right 0.899 0.972
center-left 0.887 0.970
center-center 0.890 0.984
center-right 0.920 0.987
bottom-left 0.913 0.999
bottom-center 0.905 0.975
bottom-right 0.910 0.979

(b)

ε CA BA

Clean 0.908 -
0 0.895 0.828
2 0.910 0.827
4 0.898 0.867
8 0.913 0.999
12 0.912 1.000
16 0.911 1.000
32 0.851 1.000
64 0.720 1.000
128 0.367 1.000

(c)

Pois. Ratio (%) CA BA

Clean 0.908 -
1 0.909 0.586
2 0.913 0.719
3 0.905 0.952
4 0.903 0.977
5 0.913 0.999
10 0.902 0.999
15 0.900 1.000
20 0.891 1.000
30 0.847 1.000

(d)

Table 3. Impact of (a) backdoor patch size, (b) # of shots and (c) presence/absence
of patch and noise on clean accuracy (CA) and backdoor accuracy (BA).

Patch Size CA BA

Clean 0.908 -
8× 8 0.906 0.851

16× 16 0.901 0.896
24× 24 0.913 0.999
32× 32 0.701 0.999
64× 64 0.634 1.000

128× 128 0.563 1.000
(a)

# of Shots CA BA

Clean 0.908 -
2 0.899 0.008
4 0.797 0.535
8 0.856 0.613
12 0.888 0.938
16 0.881 0.887
32 0.913 0.999

(b)

Patch Noise CA BA

Clean 0.908 -
3 7 0.895 0.828
7 3 0.922 0.937
3 3 0.913 0.999

(c)

Results and Discussion: Tab. 1 presents a comparison of our approach, BAPLe
with other baselines on four medical foundation models and six downstream
datasets in terms of CA and BA. Our approach demonstrates higher BA and
comparable CA relative to full-finetuning-based approaches (denoted by o). The
poor BA of full-finetuning-based methods is probably due to the large network
being overfitted to the limited downstream training data, leading to suboptimal
feature representation. On the other hand, BAPLe precisely tailors the input
space, enabling the pre-trained medical VLM to leverage its knowledge to achieve
high BA without hampering CA. As our method is designed for prompt tuning,
we compare our method results with other baseline attacks operating during
the prompt-tuning approach (denoted by ©). The high backdoor accuracy (BA)
achieved by BAPLe under these conditions suggests that our combination of a
learnable noise-based trigger with a medical patch trigger is particularly effective
(see Fig. 1 and Tab. 1).
Ablations: We perform ablative analysis under different settings on the PLIP
model and Kather dataset. Target Class Agnosticism: Tab. 2(a) shows that
attack performance remains consistent across different target classes, demon-
strating that our proposed attack is class-agnostic. Robustness to Patch Po-
sitioning: Tab. 2(b) shows that CA and BA are mostly unchanged despite the
changes in patch location, showcasing the attack’s robustness to variations in
patch positioning. BA vs Noise Strength: Tab. 2(c) shows increasing noise
strength improves BA, highlighting a direct correlation with attack effective-
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ness, albeit at the expense of imperceptibility. Poissoning Ratio: Tab. 2(d)
illustrates that an increased poison ratio boosts BA. However, a higher poison
ratio negatively impacts CA, indicating a trade-off between BA and CA. Patch
size: Increasing the size of the backdoor patch improves BA, as demonstrated in
Tab. 3(a) Number of few-shots: Tab. 3(b) shows that increasing the number
of shots per class improves both CA and BA. Synergy of Patch and Noise:
Tab. 3(c) depicts how the backdoor patch and learnable noise combination syn-
ergistically enhance the attack’s effectiveness.

5 Conclusion

In this paper, for the first time, we show that medical foundation models are
vulnerable to backdoor attacks, even when data is scarce. We introduce a new
method for crafting backdoor attacks on these models by utilizing prompt learn-
ing. Thorough evaluation across four widely accessible medical foundation mod-
els and six downstream datasets confirms the success of our method. Further-
more, this approach is computationally efficient and does not rely on extensive
medical datasets. Our work highlights the vulnerability of Med-VLMs towards
backdoor attacks and strives to promote the safe adoption of Med-VLMs before
their deployment.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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