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Abstract. Skin cancer diagnosis relies on assessing the histopatholog-
ical appearance of skin cells and the patterns of epithelial skin tissue
architecture. Despite recent advancements in deep learning for automat-
ing skin cancer detection, two main challenges persist for their clinical
deployment. (1) Deep learning models only recognize the classes trained
on, giving arbitrary predictions for rare or unknown diseases. (2) The
generalization across healthcare institutions, as variations arising from
diverse scanners and staining procedures, increase the task complexity.
We propose a novel Domain Adaptation method for Unsupervised cancer
Detection (DAUD) using whole slide images to address these concerns.
Our method consists of an autoencoder-based model with stochastic
latent variables that reflect each institution’s features. We have vali-
dated DAUD in a real-world dataset from two different hospitals. In
addition, we utilized an external dataset to evaluate the capability for
out-of-distribution detection. DAUD demonstrates comparable or supe-
rior performance to the state-of-the-art methods for anomaly detection.
https://github.com/cvblab/DAUD-MICCAI2024
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1 Introduction

Skin cancer is one of the most prevalent cancers worldwide, with approximately
one in three cancer cases diagnosed globally [4]. Despite the high mortality risk
associated with skin cancer, early detection has the potential of elevating its
survival rate to 99% [25]. However, the current gold standard for its detection,
histopathological image analysis, is particularly error-prone and time-consuming.
This burden can be eased while improving the accuracy with computer-aided
diagnosis (CAD) methods, which typically leverage deep learning models to an-
alyze histology via whole slide images (WSIs). The adoption of such methods
⋆ The first two authors contributed equally.
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for classifying WSIs has increased recently due to their outstanding capabilities
for detecting several cancer [18,27,10].

While deep learning methods have achieved notable results through contin-
uous improvement on specific tasks, there are still some common drawbacks to
achieving reliable and useful CAD methods [13]. First, a CAD method will only
recognize the patterns of the subset utilized to train the model. For example,
most studies have focused on specific types of skin cancer, e.g., spitzoid tumors
[5], melanoma [14], or spindle cell cutaneous neoplasms [3]. Under this scenario,
other pathologies, which suppose a concept shift, are regarded as erroneous pre-
dictions. This is known in the literature as out-of-distribution (OoD) samples and
is frequently addressed using supervised methods [16], which is unfeasible where
malign samples are scarce and difficult to obtain. Second, utilized datasets for
skin cancer detection may lack representative characteristics observed in daily
practice [1]. WSIs may suffer from different sources of variation (also called, a co-
variate shift), such as those derived from different scanners or staining techniques
[11]. These differences are even higher when attempting to generalize to different
hospitals or institutions with different protocols. Some studies aimed to diminish
the color variations across centers. However, distinctive centers’ features remain
[26,21]. Figure 1 depicts these two issues.

Unsupervised anomaly detection has emerged due to its promising results for
detecting a concept shift [2,7]. In histopathology, anomaly detection has been
mainly applied for detecting anomalous cells or patches [30,17]. In this study,
we tailored this framework for WSI malignancy detection when considering be-
nign samples as normal and malign or unseen samples as anomalies upon which
pathologists would focus in the clinic. In this context, domain adaptation be-
comes crucial to reduce the covariate shift because it allows training models
with unseen data in an external or target domain by acquiring knowledge from a
related source domain [22]. Thus, their integration into cancer detection makes
them a solution for the joint use of interhospital datasets while applying to dif-
ferent diseases. Despite the promise of domain adaptation for anomaly detection
[28], it is a novel research area yet to be explored in histopathology.

To address the abovementioned issues, we propose a novel Domain Adapta-
tion method for Unsupervised cancer Detection (DAUD) of WSIs of malignant
and unknown samples. DAUD’s main characteristic is employing an autoencoder
to learn benign WSIs (i.e., detecting benign observed samples independent of
the hospital/institution). Due to its formulation, it detects as an anomaly, ma-
lignant and OoD WSIs. We hypothesize that both suppose a concept shift, so
the reconstruction error must be higher. This formulation can ensure that non-
benign samples (malign and unknown regardless of being benign or malignant)
are raised by the CAD system for review by the pathologist. This way, we ensure
which samples are benign and do not require further doctor review. Furthermore,
DAUD reduces the covariate shift between centers by encoding the sources of
variations of the WSIs. Specifically, we utilize stochastic latent variables for this
purpose. These variables represent the inter-hospital differences. As being rep-
resented with random variables, they can capture the intra-variability typical
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Fig. 1. Visualization of Hosp. A and B samples. Malignant leiomyosarcoma (first row),
benign leiomyoma (second row), and OoD spitzoid (third row).

of hospitals. This model is a relevant step toward generalizing cancer detection
across institutions. Our main contributions are as follows.

1. A novel domain adaptation method for unsupervised detection was devel-
oped called DAUD, which is robust to covariate shifts, while detecting the
concept shift.

2. We conducted experiments in a real-world cutaneous spindle cell (CSC) neo-
plasm dataset. These prevalent skin tumors are one of the most challenging
for expert pathologists. We considered CSC neoplasms from two different
hospitals, where the covariate shift is large.

3. We also validated the proposed method in an external dataset of spitzoid
tumors to assess the generalization capability for OoD samples.

2 Methods

The proposed method (Figure 2) consists of a self-supervised feature extrac-
tion step and a domain adaptation unsupervised cancer detection model, called
DAUD. We divided this pipeline into two independent stages to obtain more
representative features independent of the domain.

2.1 Problem formulation

Given a histopathological dataset from a hospital i composed of benign tumoral
biopsies, we extracted a d-dimensional embedding from each WSI (as described
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Fig. 2. Proposed framework. First, we obtain a global descriptor of the Whole-Slide
Image (WSI) through Region of Interest (ROI) detection, PLIP feature extractor, and
average pooling. Then, we applied our DAUD model, which disentangles in the latent
space the concept features z and the institution features d.

in Section 2.2). Then, we denoted the feature matrix as Xi ∈ RNi×d, where Ni

is the total number of WSIs in that hospital. In this context, our objective was
to, for a given number of different hospitals I, learn the distribution of benign
samples of each hospital for a specific type of tumor and learn a function f i(·)
that can predict if a new sample xi

∗ is an anomaly. We considered anomalies to
include malign biopsies and other kinds of tumors, regardless of the benignity
(i.e., any class unobserved by the model). All of these cases are considered a
concept shift since they represent new classes not observed during training.

2.2 DAUD: Domain Adaptation for Unsupervised Detection

Feature extraction. We used PLIP [9] as the feature extractor, with an em-
bedding dimension equal to 512. We applied it to each patch and then averaged
the features to obtain a global descriptor for each WSI.
Architecture. The main idea is to learn the benign features of our training
dataset across the I institutions with the autoencoder. We designed an autoen-
coder structure using fϕ and fθ as the encoder (parameterized by ϕ) and the
decoder (parameterized by θ), respectively. First, we obtained a latent represen-
tation of the input x using the deterministic transformation fϕ(x) = z. Then,
we introduced a stochastic variable in the latent space that encodes each hos-
pital’s information d. This variable follows a multivariate Gaussian distribution
given the specific hospital d|i ∼ N (µi,Σi). We assumed that Σi is diagonal. We
also impose a prior centered isotropic multivariate Gaussian distribution on the
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domain variables, p(d) = N (0, I). Note that the distribution p(d|i) encodes the
variability and intrinsic properties of the domain, while z retains the concept
features of the sample. We define zi as the random variable that encodes both
sources of information, and we can approximate this distribution by a Gaus-
sian distribution given by zi|d, z, i ∼ N (zi|z + µi,Σi). Finally, we aimed to
decode this compressed representation given the institution. The probabilistic
decoder gives the following observation model pθ(x|zi) = N (x|fθ(zi), I). Since
the posterior of zi is intractable, we utilize variational inference to compute an
approximate posterior qϕ(·).
Training scheme. The evidence lower bound (ELBO) of our model for a data
point x from institution i is given by:

ELBO(θ, ϕ, µi,Σi;x, i) = Eqϕ(zi|x)
[
log pθ(x|zi)

]
− KL(qϕ(d|i)||p(d)). (1)

where KL(qϕ(d|i)||p(d)) is the Kullback-Leibler (KL) divergence between the
approximate posterior qϕ(d|i) and the prior p(d). Note that the approximate
posterior qϕ(z

i|d, z, i) is obtained from the the encoder and the approximate
posterior qϕ(d|i). The first term in Eq. 1 corresponds to the reconstruction er-
ror (i.e., mean square error). The second term in Eq. 1 uses KL divergence to
encourage fidelity to the prior distribution. This term can be regarded as a regu-
larizer. The training objective is to maximize the ELBO given the observational
data, and the model can be optimized with respect to the variational ϕ, µi, Σi

and generative parameters θ.
Reparametrization trick. To obtain samples from the distribution qϕ(z

i|d, z, i),
we utilized the reparametrization trick. We sampled from the posterior using
z(i,l) = gϕ(x, ϵ

l) = z + µi + σi ∗ ϵl, where ϵl ∼ N (0, I). With *, we denote the
element-wise product. We can compute an estimator of the ELBO using L Monte
Carlo samples:

Eqϕ(zi|x∗)

[
log pθ(x|zi)

]
≈ 1

L

L∑
l=1

log pθ(x∗|z∗(i,l)). (2)

Prediction and anomaly score. For a new test sample x∗ from institution
i, we estimate the likelihood of this sample with the Monte Carlo estimation
given by Eq. 2. If the institution i is unobserved during the training, we assume
that qϕ(d|i) = p(d). We sampled from the prior of d because we did not learned
a posterior for that institution. Once the likelihood was estimated, we use this
value as the anomalous score to distinguish anomalous/OoD samples, this can
also be thought of as the mean square error.

3 Experiments and results

3.1 Experimental settings

AI4SkIN dataset. This is an in-house dataset consisting of 239 slides from the
Hospital Universitario San Cecilio de Granada (called Hosp. A hereafter) and 369
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Table 1. Average AUC values for 10 independent runs. We also report the 0.95-CI
interval. We depict the values for testing benign vs malignant (anomaly) for Hosp. A
and B, and benign vs unknown (OoD). We report the average AUCs.

Hosp. A Hosp. B OoD dataset
VAE [12] 0.6575± 0.0014 0.8199± 0.0038 0.6591± 0.0005

β-VAE [8] 0.6630± 0.0046 0.8395± 0.0136 0.6627± 0.0064

AnoGAN [24] 0.6490± 0.0467 0.7753± 0.0466 0.5205± 0.0889

DeepSVDD [23] 0.6226± 0.0338 0.7931± 0.0301 0.6533± 0.0329

ECOD [15] 0.6033± 0.0 0.7512± 0.0 0.5710± 0.0

DAUD (ours) 0.6421± 0.0147 0.8974± 0.0063 0.8199± 0.0070

slides from the Hospital Clínico Universitario de Valencia (Hosp. B hereafter).
This dataset includes seven types of cutaneous spindle cell neoplasms. We uti-
lized the same preparations steps and details as in [6]. Each institution scanned
H&E WSIs at a magnification of 40× using a standardized protocol and a single
scanner, a Philips Ultra-Fast scanner (for Hosp. A), and a Roche Ventana iScan
HT scanner (for Hosp. B). Then, they were downsampled to 10× and cropped
into overlapping patches of 512 × 512. We used an ROI detector to extract the
relevant patches from each WSI [3]. We utilized 70/30 for the train/test split,
and ensured a balanced set for testing. The dataset was normalized using the
Macenko method [19].
SOPHIE dataset. This is a publicly available dataset [20], which comprises
61 WSIs of skin spitzoid tumors from the Department of Anatomical Pathology
of the Hospital Clínico Universitario de Valencia. Although this dataset also
originates from Hosp. B, it may have different characteristics, and a covariate
shift with respect to the AI4SkIN dataset as assumed. The slides were classified
into benign and malignant. However, we utilized all of them as OoD samples
for external validation in this study. Notably, spitzoid tumors are not fusiform
as CSC neoplasms, thus supposing a concept shift despite both originating from
the skin. The samples were processed utilizing the same procedure.
Metrics. We report the area under the curve (AUC) for each method. We ran
all experiments ten times and reported the average and the 95% CI.
Implementation details. We implemented our proposed models in PyTorch.
We employed the Adam optimizer with a learning rate of 10−3, weight decay
of 10−5 and a mini-batch size of 32. We trained our models during 200 epochs.
We utilized the popular library PyOD for running state-of-the-art methods of
anomaly detection [29].

3.2 Performance evaluation

Malignant detection. We compared our model with five state-of-the-art anomaly
detection methods to evaluate its performance. We validated these methods with
the in-house AI4SkIN dataset to detect malignant WSIs. These methods are un-
supervised and learn to detect malignant samples from a benign training set.
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Fig. 3. Training with Hosp. A and adding
samples from Hosp. B to the training set.
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Fig. 4. Training with Hosp. B and adding
samples from Hosp. A to the training set.

All the methods utilize the feature vector extracted with PLIP. Table 1 shows
the quantitative results of this comparison, demonstrating that DAUD outper-
formed the rest when evaluated in Hosp. B, and was competitive when evaluated
in Hosp. A. Reconstruction methods based on autoencoders, such as VAE, per-
form better than other widely used methods, such as ECOD, DeepSVDD, and
AnoGAN.
Out-of-Distribution detection. The models were trained with benign samples
of CSC neoplasms and then tested with benign and malignant CSC samples and
the samples of the external SOPHIE dataset with spitzoid tumors . The goal
was to distinguish between in-distribution and out-of-distribution samples. In
this case, DAUD outperformed all the methods, as shown in Table 1.

3.3 Ablation study

We evaluated the role of the latent variable d in our domain adaptation model.
We used an autoencoder (w/o domain latent variables) with the same architec-
ture as our proposed model. For a more insightful experiment, we tested the
generalization capability of the models for the other hospital. Figure 3 depicts
these results for training with Hosp. A with a different percentage of samples
added from Hosp. B (x-axis). Figure 4 shows the results for Hosp. B. DAUD con-
sistently outperformed the autoencoder across different percentages of external
data added to the training set. This advantage is more significant when we only
have access to a small amount of data from the other institution in the train-
ing set. DAUD is more robust to the covariate shift. The relative improvement
achieved nearly a 6% relative increase from 0.85 to 0.9 for Hosp. A (see Figure
3) and a 16% relative increase from 0.55 to 0.64 for Hosp. B (see Figure 4).

3.4 Visualizations

We gained further insights into our model by visualizing the latent variables.
Figure 5 shows that the posterior distribution of d for the two first dimensions
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Fig. 5. Visualization of the latent domain variables for Hosp. A and B.
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Fig. 7. DAUD latent space.

is shifted, reflecting the difference between hospitals. Furthermore, Figure 6 and
7 show the learned latent representations of the autoencoder and the DAUD
with a t-SNE. We show that the distribution across the center is more separated
in the autoencoder, while DAUD can make both distributions much closer.

4 Limitations

In this study, we did not distinguish between malignant and OoD but grouped
both concepts as non-benign, as a group that needs review by a doctor. In the
future, a more sophisticated anomaly score should be adopted to make the clin-
ical application more efficient. Clinical knowledge can be introduced to measure
the magnitude of the concept shift. The main objective has been to provide a
model that can discriminate benign WSI so doctors can focus on malign and
dubious cases. DAUD is an initial step towards reliable CAD systems for skin
cancer detection, which also alleviates the burden on pathologists.
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5 Conclusion and future work

In this paper, we proposed a novel domain adaption method called DAUD for un-
supervised detection of malignant and unknown WSIs, demonstrating similar or
superior performance to state-of-the-art anomaly detection methods. Addition-
ally, using latent representations of each center enabled a better generalization
with few samples from the other institution. Our method also outperformed
the competitors for OoD detection in the external dataset. Future work should
focus on further validation with more varied datasets and exploring more het-
erogeneous diseases.
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