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Abstract. Fairness is an important topic for medical image analysis,
driven by the challenge of unbalanced training data among diverse target
groups and the societal demand for equitable medical quality. In response
to this issue, our research adopts a data-driven strategy—enhancing data
balance by integrating synthetic images. However, in terms of generat-
ing synthetic images, previous works either lack paired labels or fail to
precisely control the boundaries of synthetic images to be aligned with
those labels. To address this, we formulate the problem in a joint opti-
mization manner, in which three networks are optimized towards the goal
of empirical risk minimization and fairness maximization. On the imple-
mentation side, our solution features an innovative Point-Image Diffu-
sion architecture, which leverages 3D point clouds for improved control
over mask boundaries through a point-mask-image synthesis pipeline.
This method outperforms significantly existing techniques in synthesiz-
ing scanning laser ophthalmoscopy (SLO) fundus images. By combining
synthetic data with real data during the training phase using a proposed
Equal Scale approach, our model achieves superior fairness segmentation
performance compared to the state-of-the-art fairness learning models.
Code is available at https://github.com/wenyi-li/FairDiff.

Keywords: Fairness Learning · Image Synthesis · Fundus Image Seg-
mentation · Diffusion Models

1 Introduction

The pursuit of fairness in medical image analysis is an important topic because
training data for different groups are usually unbalanced while the society calls
for equitable medical quality across diverse target groups. To address the issue
of unfairness, there are two principal strategies, optimization-driven and data-
driven approaches. The optimization-driven approaches [32,16,21,10,18] apply
fair learning methods during training over perception models [7,27,8], such as
adjusting the weight of loss for different sensitive attributes or incorporating
additional regularization losses to minimize bias across groups. By contrast, a
⋆ * Indicates Equal Contribution. † Indicates Corresponding Author.
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Fig. 1. Comparison of Traditional Noise-Image Diffusion and Our Point-
Image Diffusion Methods. We transform 2D mask data into a 3D point cloud
format, leveraging the spatial coordinates to delineate boundaries more accurately.

more principled solution, what we name as data-driven approach, addresses the
root cause of the issue—unbalanced data distribution through the augmentation
of datasets with additional images from underrepresented groups. However, ac-
quiring medical images, such as scanning laser ophthalmoscopy (SLO) fundus
images, from vulnerable and under-represented populations proves challenging
[22,25]. Therefore, we resort to image synthesis methods [20,33,6] to generate
additional data, aiming to improve the fairness of results.

A recent study FairSeg [28] proposes the first fairness dataset for medical
segmentation, including 10,000 SLO fundus images from 10,000 patients with
pixel-wise disc and cup segmentation mask annotation. The cup-disc area is
important for diagnosing a range of eye conditions. However, the anatomical
structures of the fundus vary across different racial groups. For instance, Blacks
often have a larger cup-to-disc ratio than other races, and Asians are more prone
to angle-closure glaucoma than Whites. Therefore, the diversity of the cup-disc
area present challenges to the synthesis of images.

Previous medical image synthesis works [14,5,3] mainly focused on the direct
generation of medical images. Although these synthesized images often closely
mimic the distribution of real images, they lack paired labels, and the process of
annotating these images is time-consuming and labor-intensive. Several mask-
to-image works, like Freemask [30] and OASIS [26], can generate images from
masks but utilize the same set of masks for both real and synthetic samples,
which lead to a lack of diversity. SEGGEN [31] proposed MaskSyn which can
generate masks through 2D diffusion model [19]. However, accurately controlling
these mask boundaries in a two-dimensional space using GANs [9,1,13] and 2D
diffusion models [12,20,4] is challenging, because of the inherent constraints in
capturing boundaries with pixel-level detail [23,24].



FairDiff: Fair Segmentation with Point-Image Diffusion 3

Input 𝒛𝒕

Prompt

ControlNet

𝒛𝒕−𝟏  

Stable Diffusion

𝑤~𝒩(0, 𝐼)

𝒩(0, 𝐼)

𝔃

𝜇𝜃

𝑥1
(𝑇)

𝑥2
(𝑇)

𝑥𝑁
(𝑇)

···

𝜇𝜃

𝑥1
(𝑇−1)

𝑥2
(𝑇−1)

𝑥𝑁
(𝑇−1)

···

𝑥1
(0)

𝑥2
(0)

𝑥𝑁
(0)

···

···

···
Reverse 

Diffusion

𝑝𝜃(𝑥𝑖
𝑡−1

|𝑥𝑖
𝑡

, 𝑧)

ℰ 𝒄𝒇

Time𝐹𝛼
Prior Flow

Trainable Frozen

Class C

Class B

Class A

Real Synthetic

···

1.Point-Mask Generation 

Class C

Class B

Class A

Real

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐷𝑎𝑡𝑎

𝑅ea𝑙 𝐷𝑎𝑡𝑎

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐷𝑎𝑡𝑎

2. Mask-Image Generation 3. Fairness-aware Data Combination 

Fig. 2. Overview of Our Fairness-aware Point-Image Diffusion Framework.

To address these challenges, we explore the utilization of sampling points
that convert pixel boundaries into spatial coordinates to enhance boundary con-
trol. Sampling points on a 2D mask results in a 2D point cloud. However, to
distinguish different category boundaries, we transform the point cloud into a
3D format for better point feature learning, where the z-axis is used to mark cat-
egories, while the x and y coordinates retain their roles as the plane coordinates.
The process is illustrated in Fig. 1.

In this paper, we formulate the fairness problem in a joint optimization man-
ner, in which three networks are optimized towards the goal of empirical risk
minimization and fairness maximization. On the implementation side, we in-
troduce a novel Point-Image Diffusion architecture. In this framework, we first
generate segmentation masks using point cloud diffusion and then synthesize
images based on the control of these synthesized masks. After acquiring a sub-
stantial amount of synthetic data for various minority groups, we employ an
equal-scale data-combining approach to ensure that the populations of each sen-
sitive attribute group are balanced.

Contributions. In summary, our contributions are as follows: (1) We intro-
duce a novel Point-Image diffusion approach for medical image synthesis, which
utilizes 3D point clouds to enhance mask boundary control. This method out-
performs significantly existing techniques in SLO fundus image synthesis. (2)
Downstream segmentation tasks verified the efficacy of the synthesized data,
demonstrating improvement in model segmentation performance. (3) By simply
integrating synthetic and real data in the training phase, we achieve superior fair-
ness segmentation performance compared to the state-of-the-art fairness learning
models.

2 Methodology

2.1 Overview

Preliminaries. Fairness in a segmentation model can be defined as the model’s
ability to score evenly for images of different target groups. Consider a dataset
D that is made up of image pairs (x, y). Here, x represents the input image and
y is the ground truth segmentation mask. ŷ refers to the predicted mask. To
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measure the fairness of segmentation, we introduce a metric called Fairnessθ(D)
on the dataset D of segmentation method θ. If we have sensitive attributes
S = {s0, ..., si, ...sk}, each attribute can divide the population into groups G =
{g1, ..., gn}. The fairness metric for segmentation can be represented as:

Fairnessθ(D) = −
k∑
i=1

(VarG [Mθ(ŷ, y|si)]) (1)

where Mθ(ŷ, y|si) is the performance metrics such as mIoU or Dice coefficient,
VarG is the variance of metrics within the groups under si.

Overview of Framework. To achieve fairness, our research primarily ex-
plores data-driven methodologies, focusing on the use of synthetic data. As illus-
trated in Fig 2, we introduce a novel Point-Image architecture designed specifi-
cally for the high-quality SLO fundus images synthesis. The first step is to gen-
erate segmentation masks from a Gaussian noise N using a 3D diffusion model
with parameters ϕ , and then to generate images x from the masks using a 2D
diffusion model with parameters ψ. After integrating data from real datasets
with synthesized data, we proceed to train them using a segmentation model
that is parameterized by θ. The overall optimization can be defined as:

min
θ

max
ϕ,ψ

Fairness(D, θ, ϕ, ψ) (2)

2.2 Point-Mask Generation

To produce diverse cup-disc shape fundus images for SLO and acquire precise
label maps for synthetic image data, we first augment segmentation masks using
the labels from actual real-world data.

Transformation to 3D Point Cloud. Given a 2D mask image of size
W ×H, where W and H are the width and height of the image. The function
f : I → P maps I to a 3D point cloud P for training. f is defined as follows:

f(I) = {pi = (xi, yi, zi) | (xi, yi) ∈ Boundary(I), zi = g((xi, yi), I)} (3)

where (xi, yi) are the coordinates of a pixel in I, Boundary(I) represents those
pixels that are situated at the segmentation boundaries, g((xi, yi), I) is a function
that assigns the zi value based on the pixel’s position. g is defined as follows:

g((xi, yi), I) =

{
z0 if (xi, yi) is on the boundary of the Cup
−z0 if (xi, yi) is on the boundary of the Disc

(4)

Point Cloud Diffusion for Generation. After converting the existing 2D
labels into 3D point clouds, we employ a point cloud diffusion model based on
[15] to learn the distribution of these point clouds. The primary training goal of
this model is to simulate the reverse of a random diffusion process, learning to
move from a normal distribution to the distribution of real point clouds. During
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the training phase, we introduce varying degrees of random noise into the point
clouds and ensure that the denoising model predicts noise that closely matches
the actual noise added.

For each group gi of the sensitive attribute S, we train a point cloud diffusion
model ϕi. Since ϕi can effectively capture the characteristics of the cup-disc
contour for different groups, we can selectively augment samples for different
groups, particularly for minority populations. Through this approach, we prepare
the label sets for subsequent procedure.

2.3 Mask-Image Generation

Given the generated mask m as condition c, the next step is to synthesize an
image x . This integration ofm into the neural network is achieved by introducing
an extra condition c into a neural network block, via an architecture known
as ControlNet [33]. This method involves freezing the original Stable Diffusion
block’s parameters Φ, replicating it into a trainable copy with parameters Φc,
and connecting these blocks with two zero-initialized 1× 1 convolutional layers.
Specifically, the mask m is encoded into tokens cf = E(ci), which are then fed
into ControlNet. The output of ControlNet yc is given by:

yc = F (x;Φ) + Z (F (x+ Z(c;Φz1);Φc) ;Φz2) (5)

where yc is the output from the ControlNet block, Z(·; ·) represents the zero
convolutional layers, and Φz1 and Φz2 are the parameters of the two zero convo-
lutional layers. At the beginning of training, yc equals y due to the zero initial-
ization of the zero convolutional layers’ weights and biases, ensuring no harmful
noise is introduced into the network’s hidden states. As training progresses, the
zero convolutional layers gradually adapt the output based on the input condi-
tion cf , thereby achieving control over the original feature map x.

2.4 Equal-Scale Data Combination

The method of combining real and synthetic data is straightforward, termed
Equal-Scale Data Combination, which balances the sample sizes across all sensi-
tive groups. Assume Dr = {xr,1, xr,2, . . . , xr,Nr} and Ds = {xs,1, xs,2, . . . , xs,Ns}
as the sets of sample points from the real data distribution Pr and the synthetic
data distribution Ps, respectively. Here, Nr and Ns denote the number of sam-
ples in the real and synthetic datasets, respectively. The equal-scale combination
process involves augmenting the dataset with synthetic samples for underrepre-
sented groups or possibly subsampling overrepresented groups. For each sensitive
group g, if Ng,r < Ntarget, generate (Ntarget −Ng,r) synthetic samples from Ps
specific to group g, resulting in a combined set D∗

g,s. If Ng,r > Ntarget, random
sample Ntarget samples from D∗

g,r. Ntarget is the target sample size, which could
be based on the size of the largest group, a specified threshold for fairness. The
combined dataset D for training can be represented as:

D =
⋃
g

(D∗
g,r ∪D∗

g,s) (6)
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3 Experiments and Results

3.1 Setup

Datasets. We use Harvard-FairSeg [28] as the real SLO fundus image dataset.
It includes six critical attributes for comprehensive studies on fairness, which
are age, gender, race, ethnicity, language preference, and marital status. The
fairness and segmentation results of all models, whether using synthetic data or
not, are tested on the test split of 2,000 real SLO fundus images.

Segmentation Models. To verify the impact of our synthetic data on seg-
mentation and fairness, we selected two segmentation models, including a small
model TransUNet [2] and a larger model SAMed [34] (the experiments on the
latter are provided in the supplementary).

Training Details. For the training of image synthesis, we utilize 512 points
to sample the boundaries of each original mask. These point clouds are then
normalized. Training is performed on NVIDIA 3090 GPUs with a batch size
of 48 and a learning rate of 1e-4 across 2,000,000 steps. For the training of
the segmentation model, following the experimental setup of Fairseg [28], we
employed a combination of cross-entropy and Dice losses as the training loss
and used the AdamW optimizer. To enable effective comparisons, TransUNet
was trained with a base learning rate of 0.01 and a momentum of 0.9 over 300
epochs, while SAMed was set with a base learning rate of 0.005 and a momentum
of 0.9, undergoing training for 100 epochs. The batch size for both was set to 48.
For the number of training samples, we have controlled it to be 8000, whether
using all real data or a mix of real and synthetic data.

3.2 Synthesis Quality results

Metrics. To evaluate the generation quality, we employ the Fréchet inception
distance (FID) [11], minimum matching distance (MMD) and the coverage score
(COV). The detailed definitions of these metrics can be found in the supplemen-
tary materials.

Results. We compare our Point-Image image generation method with sev-
eral state-of-the-art methods, including Stable Diffusion 1.5 [20], pix2pixHD [29],
OASIS [26], SPADE [17] and ControlNet [33]. As shown in Tab. 1, our method
significantly outperforms existing techniques in SLO fundus image synthesis. No-
tably, our approach achieves the lowest FID score, indicating that our generated
images bear a closer resemblance to the actual images when compared to other
methods. Furthermore, the MMD results suggest that our method also more
accurately replicates the distribution of the original image dataset.

Ablation over two-stage diffusion. Comparing with ControlNet [33] (one-
stage label-to-image synthesis), our two-stage pipeline, where we first sample la-
bels and then synthesis images, shows effectiveness in generating diverse images,
as reflected by the highest COV (Coverage) score among the methods evaluated.
The enhancement in image quality and diversity underscores the efficacy of our
image synthesis technique. Fig. 3 visualizes the results of image synthesis.
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(a) Real  (b) SD1.5 (e) SPADE(c) pix2pixHD (f) ControlNet(d) OASIS (g) Ours

Fig. 3. Visualization Results of Different Image Synthesis Results.

Table 1. Comparison of Synthesis Quality.

Method FID↓ MMD↓ COV↑

SD1.5[20] 167.39 33.21 3.13

pix2pixHD[29] 157.02 22.73 4.63

OASIS[26] 89.92 28.57 3.07

SPADE[17] 77.26 23.82 5.75

ControlNet[33] (w/o Point-Mask) 67.29 23.60 9.45

Ours (w/ Point-Mask) 60.51 20.06 10.83

3.3 Fairness Segmentation Results

Metrics. Following prior work [28], we measure the fairness segmentation results
using Equity-Scaled Segmentation Performance (ESSP), which is defined as

ESSP =
L({(z′, y)})
1 + Stdev

(7)

where L is the Dice or IoU metric. The ES-Dice and ES-IoU metrics consider
both segmentation performance and fairness across all groups. The conventional
Overall Dice and IoU metrics only assess the segmentation performance.

Results. In our comparative analysis, we examine the performance of our
Equal Scale Data Combination method against several state-of-the-art fairness-
learning approaches, including ADV [16], GroupDRO [21], and FairSeg [28]. This
evaluation encompasses experiments conducted across four sensitive attributes.
The detailed results for TransUNet are presented from Table 2 to Table 5. Due
to limitations in space, the results of SAMed are included in the supplementary
materials. From the perspective of racial fairness, Tab. 2 highlights our Equal
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Table 2. TransUNet segmentation performance of Optic Cup and Rim (Sensitive
attribute = Race)

Overall Overall Overall Overall Asian Black White Asian Black White
Method ES-Dice↑ Dice↑ ES-IoU↑ IoU↑ Dice↑ Dice↑ Dice↑ IoU↑ IoU↑ IoU↑

C
up

TransUNet 0.8372 0.8481 0.7409 0.7532 0.8270 0.8489 0.8503 0.7277 0.7576 0.7551
TransUNet+ADV 0.8325 0.8410 0.7345 0.7432 0.8246 0.8417 0.8426 0.7260 0.7482 0.7440
TransUNet+GroupDRO 0.8313 0.8442 0.7359 0.7479 0.8197 0.8469 0.8464 0.7232 0.7529 0.7495
TransUNet+FairSeg 0.8350 0.8464 0.7374 0.7497 0.8248 0.8484 0.8484 0.7247 0.7550 0.7513
Ours(Equal Scale) 0.8397 0.8480 0.7441 0.7529 0.8320 0.8483 0.8497 0.7352 0.7572 0.7540

R
im

TransUNet 0.7604 0.7927 0.6393 0.6706 0.7457 0.7307 0.8106 0.6160 0.5991 0.6913
TransUNet+ADV 0.7579 0.7906 0.6371 0.6682 0.7413 0.7286 0.8087 0.6116 0.5982 0.6888
TransUNet+GroupDRO 0.7564 0.7896 0.6351 0.6674 0.7470 0.7229 0.8080 0.6183 0.5899 0.6887
TransUNet+FairSeg 0.7628 0.7950 0.6410 0.6725 0.7479 0.7325 0.8130 0.6185 0.6020 0.6935
Ours(Equal Scale) 0.7697 0.7999 0.6494 0.6797 0.7565 0.7427 0.8165 0.6279 0.6114 0.6994

Table 3. TransUNet segmentation performance of Optic Cup and Rim (Sensitive
attribute = Gender)

Overall Overall Overall Overall Male Female Male Female
Method ES-Dice↑ Dice↑ ES-IoU↑ IoU↑ Dice↑ Dice↑ IoU↑ IoU↑

C
up

TransUNet 0.8448 0.8481 0.7502 0.7532 0.8458 0.8513 0.7508 0.7564
TransUNet+ADV 0.8343 0.8345 0.7351 0.7356 0.8344 0.8348 0.7361 0.7350
TransUNet+GroupDRO 0.8426 0.8478 0.7473 0.7522 0.8441 0.8528 0.7483 0.7575
TransUNet+FairSeg 0.8477 0.8489 0.7502 0.7530 0.8494 0.8514 0.7505 0.7556
Ours(Equal Scale) 0.8461 0.8505 0.7522 0.7564 0.8474 0.8548 0.7531 0.7610

R
im

TransUNet 0.7895 0.7927 0.6673 0.6706 0.7951 0.7894 0.6736 0.6665
TransUNet+ADV 0.7783 0.7852 0.6553 0.6630 0.7905 0.7779 0.6699 0.6534
TransUNet+GroupDRO 0.7901 0.7917 0.6681 0.6699 0.7930 0.7900 0.6716 0.6677
TransUNet+FairSeg 0.7893 0.7898 0.6698 0.6698 0.7924 0.7932 0.6678 0.6653
Ours(Equal Scale) 0.7945 0.7981 0.6745 0.6780 0.8007 0.7944 0.6811 0.6737

Table 4. TransUNet segmentation performance of Optic Cup and Rim (Sensitive
attribute = Language)

Overall Overall Overall Overall English Spanish Others English Spanish Others
Method ES-Dice↑ Dice↑ ES-IoU↑ IoU↑ Dice↑ Dice↑ Dice↑ IoU↑ IoU↑ IoU↑

C
up

TransUNet 0.8255 0.8481 0.7273 0.7532 0.8469 0.8972 0.8531 0.7516 0.8166 0.7592
TransUNet+ADV 0.8071 0.8312 0.7056 0.7323 0.8296 0.8833 0.8338 0.7301 0.7990 0.7376
TransUNet+GroupDRO 0.8231 0.8416 0.7231 0.7442 0.8398 0.8844 0.8571 0.7421 0.7993 0.7605
TransUNet+FairSeg 0.8277 0.8481 0.7289 0.7523 0.8467 0.8934 0.8562 0.7504 0.8109 0.7619
Ours(Equal Scale) 0.8358 0.8497 0.7353 0.7542 0.8479 0.8809 0.8686 0.7519 0.8033 0.7755

R
im

TransUNet 0.7721 0.7927 0.6525 0.6706 0.7940 0.8165 0.7633 0.6721 0.6950 0.6398
TransUNet+ADV 0.7690 0.7884 0.6501 0.6666 0.7903 0.7964 0.7501 0.6687 0.6717 0.6265
TransUNet+GroupDRO 0.7691 0.7857 0.6468 0.6613 0.7867 0.8057 0.7628 0.6625 0.6800 0.6355
TransUNet+FairSeg 0.7725 0.7898 0.6524 0.6668 0.7909 0.8106 0.7661 0.6680 0.6865 0.6424
Ours(Equal Scale) 0.7783 0.7959 0.6578 0.6743 0.7970 0.8161 0.7711 0.6755 0.6969 0.6469

Scale method’s effectiveness, achieving the highest ES-Dice in both the Cup and
Rim area among all racial groups Asian, Black, and White, with remarkable
scores of 0.8397 and 0.7697, respectively. The ES-IoU metric also supports our
method, highlighting its effectiveness in achieving both accurate and equitable
segmentation. Tab. 3, Tab. 4 and Tab. 5 also demonstrate the capability to
enhance fairness metrics (ES-Dice & ES-IoU) and segmentation performance
(Dice & IoU).
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Table 5. TransUNet segmentation performance of Optic Cup and Rim (Sensitive
attribute = Ethnicity)

Overall Overall Overall Overall Hispanic Non-Hispanic Hispanic Non-Hispanic
Method ES-Dice↑ Dice↑ ES-IoU↑ IoU↑ Dice↑ Dice↑ IoU↑ IoU↑

C
up

TransUNet 0.8339 0.8481 0.7366 0.7532 0.8463 0.8704 0.7508 0.7826
TransUNet+ADV 0.8171 0.8320 0.7149 0.7315 0.8304 0.8561 0.7294 0.7622
TransUNet+GroupDRO 0.8376 0.8482 0.7406 0.7526 0.8468 0.8648 0.7507 0.7735
TransUNet+FairSeg 0.8388 0.8483 0.7412 0.7542 0.8501 0.8661 0.7515 0.7764
Ours(Equal Scale) 0.8439 0.8462 0.7402 0.7500 0.8485 0.8448 0.7664 0.7477

R
im

TransUNet 0.7848 0.7927 0.6650 0.6706 0.7914 0.8057 0.6695 0.6815
TransUNet+ADV 0.7793 0.7841 0.6570 0.6602 0.7829 0.7915 0.6590 0.6658
TransUNet+GroupDRO 0.7924 0.7943 0.6694 0.6733 0.7936 0.7901 0.6728 0.6646
TransUNet+FairSeg 0.7884 0.7939 0.6710 0.6754 0.7943 0.8040 0.6697 0.6789
Ours(Equal Scale) 0.7886 0.7902 0.6666 0.6670 0.7917 0.7888 0.6649 0.6657

4 Conclusion

In this study, we analyze fairness within the context of medical image segmen-
tation and address the challenge of data imbalance through the use of synthetic
data. We present a novel Point-Image Diffusion method tailored for synthesizing
SLO fundus images, which significantly outperforms existing techniques in this
domain. By incorporating both synthetic and real data during the training phase
utilizing the Equal Scale method, we achieve a comprehensive improvement in
both accuracy and fairness across various sensitive attributes.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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