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Abstract. Dual-energy CT (DECT) is gaining attention as an e�ective
medical imaging modality for detecting bone marrow edema. However,
imaging is complicated by the lower contrast o�ered by DECT compared
to MRI and the inherent presence of artifacts in the image formation pro-
cess, necessitating expertise in DECT. Despite advancements in AI-based
solutions for image enhancement, achieving an artifact-free outcome in
DECT remains di�cult due to the impracticality of obtaining paired
ground-truth and artifact-containing images for supervised learning. Re-
cently, unsupervised techniques demonstrate high performance in image
translation tasks. However, these methods face challenges in DECT due
to the similarity between artifact and pathological patterns and could
have a detrimental impact on image interpretation. In this study, we
developed CAPTURE-GAN, which leverages a pre-trained classi�er to
preserve edema characteristics while removing DECT artifacts. Addition-
ally, we introduced a mask indicating local regions pertaining to artifacts
in order to prevent the output of the model from being over-smoothed or
losing the bones' structural outline. Our approach fully utilizes automat-
ically generated masks within the overall framework to only selectively
modify the necessary local regions more cleanly and precisely than exist-
ing networks while preserving intricate bone patterns. Particularly, the
performance of the classi�er on artifact-removed images has been shown
to surpass corresponding images before artifact removal. Code and mod-
els are available at https://github.com/pnu-amilab/CAPTURE-GAN.
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1 Introduction

One of the pivotal applications of dual-energy CT (DECT) is the detection of
bone marrow edema (BME), which is a precursor to fractures. Despite its lower
contrast relative to MRI, DECT enables the visualization of �uid within bone
through material decomposition techniques [5, 18]. However, artifacts that are
an inevitable part of the image formation process can obscure or simulate the
pathological patterns of �uids, leading to incorrect interpretations if not accu-
rately identi�ed. Consequently, diagnosing BME or precisely localizing lesions
requires extensive expertise in DECT.

Recent advances in AI-based solutions have shown promise in assisting ra-
diologists with their diagnostic decisions by enhancing the quality of images [1,
19]. These solutions predominantly use deep neural network frameworks, oper-
ating in a supervised manner with extensive datasets. However, achieving an
artifact-free outcome in DECT is challenging, as it is impractical to obtain a
ground-truth image that is paired with its artifact-containing counterpart for
supervisory purposes.

A potential strategy involves the use of unsupervised techniques for arti-
fact removal and subsequent inpainting of the a�ected areas. For instance, the
CycleGAN architecture [20] enables domain translation using unpaired image
datasets. Similarly, AttGAN [8] incorporates an embedded label for a speci�c
attribute as input, facilitating attribute modi�cation. While these networks have
shown impressive performance in processing natural camera images, their e�-
cacy in DECT imaging tasks is not assured. This uncertainty arises because the
artifacts and the pathological patterns are markedly similar, and designating
artifacts as a speci�c attribute for targeted removal could inadvertently alter
the pattern of edema due to their resemblance. Consequently, e�orts to enhance
speci�city may inadvertently reduce sensitivity.

In this study, we introduce the Conditional Attribute Preservation through
Unveiling Realistic GAN (CAPTURE-GAN) framework, designed to minimize
artifacts while preserving the pathology of BME and the anatomical integrity
of bone. The foundational concept lies in integrating a generative model, in-
spired by CycleGAN, with conditional constraints applied through masking and
classi�cation models. Speci�cally, CycleGAN is employed to generate plausible
artifact-free images from corrupted ones, utilizing a cycle consistency loss as its
constraint mechanism. Nonetheless, in the demanding context of DECT imaging,
where artifacts can mimic pathological patterns to the unaided eye, CycleGAN
alone struggles to distinguish �ne details, often leading to the obliteration of both
the intricate internal bone patterns and the bone's structural outline. Similar to
the research conducted by [17, 10], we have developed an automated masking
technique that introduces bone priors into CycleGAN, enhancing its focus on
preserving bone structure while selectively removing artifacts. Furthermore, in-
tegrating a disease classi�cation network imposes additional constraints on Cy-
cleGAN, ensuring that the generated images do not obscure essential patterns
critical for disease diagnosis.
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Fig. 1. CAPTURE-GAN Overview. This architecture, based on CycleGAN, includes
an artifact-removal generator (Gf ) and an artifact-corrupting generator (Ga), along
with their associated adversarial discriminators Df and Da. The forward cycle trans-
lates images from the artifact-corrupted domain to the artifact-free domain and back
again, while the backward cycle performs the reverse. The mask input to Ga assists
the generator in synthesizing realistically corrupted images. When Gf and Ga receive
artifact-free and artifact-corrupted images, respectively, they function as identity op-
erators. The artifact-free images produced by Gf are assessed by the BME classi�er
Ce to determine whether Gf retains disease-distinguishing patterns.

2 Method

Figure 1 presents an overview of our model, CAPTURE-GAN, designed to selec-
tively eliminate artifacts from DECT images. The architecture comprises multi-
ple neural networks, including one classi�er, two generators, two discriminators,
and one non-neural-network-based mask creator. These components are strate-
gically interconnected, enabling one generator (Gf ) to access a diverse set of
realistically augmented, artifact-corrupted bone images. This con�guration di-
rects the model to pro�ciently distinguish between artifacts and pathological
BME patterns, facilitating e�ective isolation.

2.1 CAPTURE-GAN

Our CAPTURE-GAN model is derived from a CycleGAN framework. As de-
picted in Figure 1, in the forward cycle, an artifact-corrupted image Xa is fed
into the artifact-removal generator Gf , which produces an artifact-free image

X̂af . This clean image is then input into the artifact-corrupting generator Ga

along with a mask Mi to generate a corrupted image X̂afa. The mask assists the
network in reconstructing an image closely resembling Xa. The cycle-consistency
loss, combined with an adversarial loss, compels the discriminator Df to ensure
that Gf preserves the bone outline and pathological patterns.
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In the backward cycle, each artifact-free image Xf is introduced into Ga to

produce a corrupted image X̂fa, again using the mask Mi. The mask's role here
is to allow Ga to introduce varied plausible artifact patterns within the bone (as
shown in supplementary). Processing this synthetic image through Gf results in

a clean image X̂faf , enhancing the network's robustness through augmentation.
The cycle-consistency and adversarial losses obligate Ga to create more realistic
corrupted images.

Beyond these cycles, additional processes are also in place. When Gf and
Ga receive Xf and Xa, respectively, they are expected to function as identity
operators. Minimizing the di�erence between input and output helps preserve
the identity. Here, Ga utilizes a zero-value mask Mn, to ensure that additional
artifact generation is not present when creating X̂a from Xa.

Our architecture expands on the work by [12], utilizing a ResUNet-based
structure for both Ga and Gf . This architecture is characterized by several key
features: 1) it is segmented into encoder and decoder sections; 2) it incorporates
squeeze-and-excitation blocks [9] to highlight critical layer features; 3) it utilizes
Atrous Spatial Pyramidal Pooling (ASPP) [3] to address both local and global
features concurrently; and 4) it ensures the preservation of vital feature infor-
mation through the inclusion of residual blocks [7]. The designs of Da and Df

are based on the PatchGAN architecture [11], similar to [10].

2.2 Pre-trained classi�er and mask creator

The CAPTURE-GAN model incorporates the binary classi�er Ce, which di�er-
entiates between edema and normal images. The structure of classi�er utilizes
the ResNet18 architecture from [7], and it was pre-trained on bone images from
56 patient cases prior to the comprehensive training of the model. The feed-
back from Ce strengthens the capability of the artifact-removal generator Gf to
preserve pathological details. The training of the classi�er utilized the Adam op-
timizer [13] with a learning rate of 0.0002 and a mini-batch size of 16. To address
the challenges of data scarcity and class imbalance, conventional augmentation
techniques were applied. Validation on an image dataset independent from the
training set yielded an accuracy of 88.7%.

Each binary mask Mi, utilized by the artifact-corrupting generator Ga, is au-
tomatically generated through the combination of two intermediate masks dur-
ing model training. Figure 1 illustrates the process, where the �rst intermediate
mask, the artifact mask, delineates the shapes of artifacts. This mask is derived
during the forward cycle from the di�erence between the input and the output of
the artifact-removal generator Gf , calculated as U(max(Xa − X̂af , 0), θ), where
U(·) represents the unit (binary) step function and θ denotes the adaptively de-
termined threshold value by the Otsu method [16]. In the backward cycle, an
artifact mask is chosen from a pool of all artifact masks generated during the
forward cycle, enabling Ga to produce both realistic and varied artifact images
X̂fa. The second intermediate mask, the bone mask, outlines the shapes of the
femur bones and is extracted from Xa and Xf in the forward and backward
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cycles, respectively. It is generated through initial contrast-based segmentation
followed by graph-cut-based segmentation [2]. The purpose of this mask is to
ensure that any artifacts are con�ned within the bone region, especially during
the backward cycle. Consequently, the �nal mask Mi is created by intersecting
the artifact and bone masks, ensuring precise artifact simulation within the bone
structure.

2.3 Loss function

The loss function employed to update our model comprises multiple components.
The adversarial loss for training the artifact-removal generator Gf is de�ned as
follows:

Ladv = EX∼P (Xf )[logDf (X)] + EX∼P (Xa)[log (1−Df (Gf (X)))]. (1)

Meanwhile, the adversarial loss for updating the artifact-corrupting generator
Ga is expressed as follows:

Ladv = EX∼P (Xa)[logDa(X)] + EX∼P (Xf )[log (1−Da(Ga(X,Mi)))]. (2)

The cycle-consistency loss is formulated for the dual generators as follows:

Lcyc = EX∼P (Xf )[||X −Gf (Ga(X,Mi))||1]+ (3)

EX∼P (Xa)[||X −Ga(Gf (X),Mi)||1].

When the generators Gf and Ga receive images Xf and Xa respectively, they
should act as identity operators. To enforce this, the mask Mn used for Ga is
con�gured as a zero matrix to signal no modi�cation. The corresponding identity
loss is given as follows:

Lident = EX∼P (Xf )[||X −Gf (X)||1] + EX∼P (Xa)[||X −Ga(X,Mn)||1]. (4)

The disease classi�er Ce analyzes images produced by the artifact-removal gen-
erator Gf . Reducing the loss of Ce encourages Gf to preserve disease patterns
while eliminating artifacts. Given Ce's softmax output layer, the classi�cation
loss is de�ned as follows:

Lcls = EX∼P (Xa)[−yT log(ŷ)] + EX∼P (Xf )[−yT log(ŷ)], (5)

where ŷ = Ce(Gf (X)) ∈ R2 denotes the prediction (probability) vector and
y ∈ R2 denotes the one-hot encoded label vector. The overall loss for CAPTURE-
GAN is the weighted sum of these four losses is de�ned as follows:

LCAPTURE = Ladv + λcycLcyc + λidentLident + λclsLcls, (6)

where λcyc = 30, λident = 15 and λcls = 1 are weights determined empirically.
Speci�cally, we evaluated 100 randomly selected images from the training set,
choosing �nal weights that produced the most realistic images while maintaining
bone structure and edema patterns, as shown in Supplementary Table 1.
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2.4 Model training

We initialized the parameters of all networks using the Kaiming Normal method
[6]. The Adam optimizer, with a learning rate of 0.0002, was employed for net-
work optimization. The �rst and second momentum values were con�gured to
0.5 and 0.999, respectively. All networks underwent training for 500 epochs with
a mini-batch size of 4, using a A100 GPU. For data augmentation purposes, a
randomly cropped image of size 224 × 224 was used as training data at each
iteration.

3 Experimental Results

3.1 Dataset

We collected DECT and corresponding MRI images from 70 subjects, adhering
to criteria that included: the availability of MRI images for precise annotation,
scans performed within a month of each other, and clear artifact identi�cation.
DECT scans were executed using 80 and 140 kVp settings (Revolution CT; GE
Healthcare), comprising conventional and water-HAP axial reconstructed im-
ages. Regions of interest were marked, extracted, and resized to (256 × 256).
For training, we used 1,837 artifact-corrupted slices and 1,064 artifact-free slices
from 56 subjects. For testing, we used 504 artifact-corrupted slices and 227
artifact-free slices from the remaining 14 subjects.

3.2 Evaluation

We evaluated the performance of our proposed CAPTURE-GAN against a range
of unsupervised attribute-editing image reconstruction methods, including Fader-
Net [14], AttGAN [8], StarGAN [4], CycleGAN [20], and STGAN [15]. To high-
light the versatility of our model beyond the cycle consistency-based framework,
we conducted experiments by replacing CycleGAN with AttGAN.

The ability of each model to preserve edema information was assessed. Artifact-
corrupted images were processed by each model and then evaluated using a pre-
trained disease classi�er. This allowed for the comparison of diagnostic scores
across di�erent models. Additionally, artifact-free images were inputted into each
model. The outputs were anticipated to be identical to the input images, thereby
acting as ground truths. Consequently, we calculated peak signal-to-noise ratio
(PSNR), structural similarity index measure (SSIM), and mean absolute error
(MAE).

To gauge the artifact-removal e�cacy, we employed pre-trained classi�er to
discern whether input images were artifact-free or artifact-corrupted. Following
the methodology used with the disease classi�er, we inputted the �ltered images
into the artifact-detecting classi�er and examined the classi�cation accuracies.

In our �nal analysis, we conducted an ablation study by incrementally adding
components to the backbone. This study was aimed at uncovering the contribu-
tions of each component toward the overall performance.
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Fig. 2. Filtered images were produced from an artifact-corrupted input image by each
respective model. The �rst and second columns display MRI and corresponding DECT
input images, respectively. The subsequent columns show the output �ltered images.
Red boxes highlight artifacts, while blue arrows indicate pathological patterns.

Fig. 3. Images corrupted by artifacts were processed by each model, and the resulting
�ltered images were then fed into both the artifact-detecting and disease-detecting
classi�ers. Red bars indicate the accuracies achieved in artifact-detection classi�cation,
while blue bars display the F1 scores from disease-detection classi�cation outcomes.

3.3 Qualitative and Quantitative Comparison Results

Fig.2 displays the artifact �ltering outcomes for each model when processing
artifact-corrupted images. Compared to the input images, our model, CAPTURE-
GAN, showcased superior e�cacy in eliminating a variety of artifact patterns
while preserving edema characteristics, outperforming other models. Concur-
rently, CAPTURE-GAN preserved the gray tissue structure and texture, crucial
for disease identi�cation, with minimal loss. These �ndings are corroborated by
quantitative evaluation results. Fig.3 presents the outcomes of two classi�ers.
Our model demonstrated an exceptional balance between artifact removal and
the preservation of pathological patterns. Moreover, Fig.4 (a) shows the out-
put images when artifact-free images were used as inputs. This highlights the
fact that our model preserved the intricate bone structure without any distor-
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Fig. 4. (a) Images generated by each model. The output images were produced by each
model from an artifact-free input image. The images in the left �ve columns are the
output images, and the images in the rightmost column are the input images (ground-
truths). (b) Quantitative comparisons between models. PSNR, SSIM and MAE between
ground-truth and artifact-free images processed by each model were calculated.

Table 1. Ablation study results. The scores were obtained when artifact-corrupted
images were processed by each model, and the resulting images were subsequently
input into either the artifact-detecting classi�er or the edema-detecting classi�er.

Method ACC (Artifact) (%) ACC (Edema) (%) AUC (Edema) (%) F1 Score (Edema) (%)

None - 88.10 93.74 75.00

AttGAN 25.99 82.24 92.52 68.10

Att-CAPTURE-GAN 60.32 90.08 91.63 73.68

CycleGAN 70.24 80.36 64.65 26.67

Cycle-CAPTURE-GAN (w/o mask) 81.35 88.49 95.12 77.52

Cycle-CAPTURE-GAN (w/ mask) 87.70 90.67 95.16 80.33

tions. Fig.4 (b), which summarizes the quantitative scores, further emphasizes
the superiority of our model.

3.4 Ablation Study Results

Table 1 elucidates the impact of each function on artifact removal and the
preservation of pathological patterns. As the baseline GAN structure, CycleGAN
demonstrates more e�ective artifact removal than AttGAN but at the expense
of a loss of pathological information. Implementing constraint techniques across
any backbone signi�cantly boosts performance. Integrating a disease classi�er
within CycleGAN, along with the addition of a masking technique, systemati-
cally diminishes the loss of edema patterns and augments the artifact removal
capability. It is important to note that �ltering signi�cantly improved the per-
formance of the edema classi�er, resulting in notably higher diagnostic scores
when evaluating �ltered images compared to un�ltered images.

4 Conclusion

This study introduces an innovative framework designed to enhance Dual-Energy
Computed Tomography (DECT) imaging by preserving critical edema patterns
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while eliminating artifacts. This approach leverages a classi�er and masks within
a generative adversarial network, presenting a straightforward yet signi�cant
method for retaining essential edema information , a crucial aspect that must not
be compromised. Impressively, our model surpasses existing networks in retaining
edema features while e�ectively clearing artifacts. Our future research aims to
examine the impact of artifact removal functions on medical practitioners' ability
to identify local pathological features accurately. We are particularly interested
in determining whether such functions can enhance the diagnostic accuracy of
medical doctors with limited experience in interpreting DECT.
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