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Abstract. MRI scans provide valuable medical information, however
they also contain sensitive and personally identifiable information that
needs to be protected. Whereas MRI metadata is easily sanitized, MRI
image data is a privacy risk because it contains information to render
highly-realistic 3D visualizations of a patient’s head, enabling malicious
actors to possibly identify the subject by cross-referencing a database.
Data anonymization and de-identification is concerned with ensuring
the privacy and confidentiality of individuals’ personal information. Tra-
ditional MRI de-identification methods remove privacy-sensitive parts
(e.g., eyes, nose etc.) from a given scan. This comes at the expense of
introducing a domain shift that can throw off downstream analyses. In
this work, we propose CP-MAE, a model that de-identifies the face by
remodeling it (e.g., changing the face) rather than by removing parts us-
ing masked autoencoders. CP-MAE outperforms all previous approaches
in terms of downstream task performance as well as de-identification.
With our method we are able to synthesize high-fidelity scans of resolu-
tion up to 2562 on the ADNI and OASIS-3 datasets — compared to 1283
with previous approaches — which constitutes an eight-fold increase in
the number of voxels.

Keywords: Magnetic Resonance Imaging - Privacy in Health - Gener-
ative Modeling.

1 Introduction

While MRI scans are usually visualized as 2D slices, it is also possible to render a
high-quality 3D model using techniques such as volumetric raytracing, yielding
a realistic depiction of a patient’s face. This is problematic in terms of data

** Data used in preparation of this article were obtained from ADNI (adni.loni.usc.
edu)). As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in analysis or
writing of this report. A complete listing of ADNI investigators can be found at: jadni.
loni.usc.edu/wp-content /uploads/how_to_apply /ADNI_Acknowledgement_List.pdf
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Fig. 1: MRI scans pose a privacy risk since highly-realistic face renderings can be
crafted and misused for malicious purposes. The remodeling approach to MRI
de-identification, used in our work, retains the brain (=) and remodels all other
features (#). (top: 3D view, bottom slice-view, taken from OASIS-3)

privacy: Given and MRI scan and a face database with associated identities, a
malicious actor can find the closest match to a given face rendering, allowing
them to potentially infer a patient’s identity.

Various de-identification methods have appeared over the years that address
the removal of privacy-sensitive parts. Most are quite simple and differ in their
level of aggressiveness: While FACE MASK [10] merely blurs out the face, skull-
stripping methods such as MRIWATERSHED [I7] retain only the brain and remove
everything else. However, these traditional approaches are potentially problem-
atic. Many tools in the medical workflow require the presence of certain land-
marks as preconditions. If those landmarks are absent, the analysis might be
impaired or, in the worst case, it might be impossible to perform the analysis at
all [18]. On the other hand, if a method is not aggressive enough it might still be
feasible to infer a patient’s identity, a fact that proves especially harmful when
such a tool is to be used automatically and without oversight on a large corpus
of scans.

Our recently proposed GAN-based approach named CP-GAN [5] introduced a
new paradigm: to remodel the face and leave the medically-relevant information
intact. Simply put, a patient’s MRI scan is de-identified by copying their brain
and remodeling the remaining parts such that they appear to be an actual MRI
scan, but do not give away information about the patient’s real face or identity.
This approach eliminates the aforementioned trade-off, as it ensures reasonable
placement of landmarks and thus minimizes domain shift, leading to a safer and
more effective de-identification.

Recently, the emergence of masked autoencoders (MAEs) has propelled gener-
ative approaches forward, departing from the previously dominant GAN method-
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ology by predicting stochastically-masked segments of the data instead of for-
mulating an adversarial game. MAEs offer two fundamental advantages over
GANSs: (i) Higher training stability, and, (ii) Higher data efficiency. Considering
that MRI de-identification with generative models involves high memory require-
ments, data scarcity, and often suffers from instability due to small batch sizes,
MAEs appear to be an attractive alternative.

In this work, we adapt masked autoencoders for MRI de-identfication. Our
contributions are as follows:

1. We propose CP-MAE, a masked autoencoder-based model that can deal with
high-resolution MRI scans. Whereas previous remodeling-based method were
limited to a resolution of 1282, CP-GAN can produce de-identified scans of
size 2563, an 8—fold increase in the number of voxels.

2. To the best of our knowledge, CP-GAN is the first to combine a volumetric
VQ-VAE with an MAE for 3D MR image synthesis

3. We demonstrate that CP-MAE yields superior de-identification performance
compared to other methods and can be robustly trained on modestly-sized
datasets (e.g., ADNI, OASIS-3)

4. We show that de-identification with CP-MAE introduces minimal adverse
effects on brain tissue and subcortical segmentation tasks compared to other
approaches.

2 Related Work

MRI De-Identification. MRI de-identification is a critical pre-processing step
in neuroimaging, and many methods have been proposed to effectively perform
this task. BET [19] is widely used for its simplicity. Despite its effectiveness, it
sometimes fails to exclude non-brain tissues, such as dura and eyes. ROBEX [7]
aims to address some of these shortcomings by employing a trained random
forest classifier to distinguish brain and non-brain voxels. MRI WATERSHED, in
turn, [I7] employs a watershed transformation followed by a deformable model
to extract the brain. Milchenko et al. [I0] propose FACE MASK, focusing on the
protection of sensitive facial information in MRI data. This method combines
the benefits of defacing and skull-stripping by generating a mask that can be
used to blur out facial features while preserving brain anatomy. Schimke et
al. introduced a tool named QUICKSHEAR [I6], which is intended to compute a
hyperplane in 3D space that separates the facial features from the brain. DEFACE
[1] is a deformable model that estimates which voxels belong to the brain, said
voxels can then be cut out for de-identification purposes.

Finally, CP-GAN [5] remodels non-brain tissues as opposed to removing them.
The de-identification is performed by a conditional GAN that takes as input the
patient’s brain and a convex hull hinting at the metric extent of the skull to be
generated. Our approach follows this paradigm of remodeling the face and skull,
as opposed to opting for something that would remove these parts altogether.
Image Synthesis. Generative models, including VAEs [§], GANs [4], diffusion
models [20], and masked autoencoders (MAEs) [BII3JT4], are extensively studied.
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Fig.2: Vector Quantization Stage. We preprocess the data in two indepen-
dent stages: (i) We extract the brain, and simultaneously (ii) remove the brain
from the full skull. Both representations are then compressed by two indepen-
dent VQ-VAEs into discrete 3D volumes.
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MAE:S excel by reconstructing an image from a masked version of the image. Our
work builds upon recent MAEs like MaskGIT [2] and Paella [15].

3 Method

Task Definition. As in [5], given a set of 3D scans (X("))Z-:L,,,,N following a data
distribution Px and having a resolution of S, we seek a mapping Y = Gg(7(X))
parameterized by @ that de-identifies a raw scan X and yields Y. The purpose
of the privacy transform ~(-) is to provide G¢(:) with a minimal blueprint to
guide the skull synthesis without leaking information about the patient’s facial
featuresﬂ thus «v(X) should at least include a representation of the brain to
inform the model about the metric constraints of the to-be-synthesized skull.
Overview. Synthesizing (3D) MRI scans is challenging in terms of memory as
a volume contains a cubic number of voxels. VQ-VAE is therefore particularly
attractive as the number of voxels could in the most extreme case be reduced
from 2562 to a mere 643, reducing the overall number of voxels by a factor of
64. Our approach is depicted in Fig. 2] One instance of the VQ-VAE is tasked to
model the brains only, a second complementary instance models the full skulls
without the brain. Applying both trained instances on an MRI dataset produces
a paired dataset where each item is a tuple of the two latent integer volumes
coming from each VQ-VAE encoder. In a second step, we employ a Paella-style
MAE that conditions on the previously derived latents from the brain and models
the distribution of the latents pertaining to the full skulls (see Fig. [3). Unseen
MRI scans can then be de-identified by computing the latents associated to the
brain and letting the MAE synthesize a realistic skull using the brain latent as
conditioning variable (see Fig. [4]).

3 As the skull is synthesized around the brain, ~(-) should at least contain a binary
brain mask.
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Fig.3: Latent Modeling Stage (MAE). In the latent modeling stage, the
skull and brain representations obtained in Fig [2] are provided to an iterative
masked autoencoder (MAE), which repeatedly perturbs the skull latent and,
using the brain latent as conditioning, reconstructs it.

Vector Quantization Stage. In order to reduce the memory requirements of
high-resolution MR imagery, we leverage the VQ-VAE framework to compress
(parts of ) MRI scans into latent codes. As a preparatory step we use ROBEX [7]
to compute the (binary) brain mask B(X) of an MRI scan X € D. We need
the brain representation for two reasons: it serves as a conditioning variable that
informs the synthesis about the proportions of the skull, and we require it to
later copy the original brain into the de-identified scan.

We then train a 3D VQ-VAE for each of the two representations B(X) ®
X (brain) and B(X) ® X (skull) in isolation where ® denotes the Hadamard
product and B(X) = 1 — B(X). Both representations are complementar to
each other in that B(X) ® X contains solely the brain (i.e., has non-zero brain
intensities) without featuring any of the remaining parts (i.e., zero non-brain
intensities) whereas the inverted properties are true for B(X) ® X.

Training both models yields two encoder/decoder pairs (e1,dy) and (ez, dz).
After training, we deploy the two encoders to translate the dataset of MRI scans
D into a highly-compressed paired dataset of integer codes D, = {(e1[B(X) ®
X)],e2[B(X)® X] | X € D}. A depiction of this and the applied preprocessing
can be found in Fig
Latent Modeling Stage. Having the compressed latent integer representa-
tions of Ey1=e;[B(X) ® X] (brain) and Fa=e3[B(X) ® X] (skull) now at our
disposal, we describe a generative MAE Hg(FE>|E1) that predicts the integer
skull representation while conditioning on the integer brain representation.

Recall that both E; and E, are 3D volumes/grids of integers from the set
{0,...,Noy — 1}°7***5_ In order to model the distribution of F5, the MAE
methodology requires that one defines a time-dependent scheme to perturb the
integers in the E5 representation. We adopt Paella-style [I5] perturbations, i.e.,
a value v € {0,..., Nov — 1} is kept with probability «; and resampled from
the same set with a probability 1 — oy, where the time ¢ ~ U(0,1) is sampled
independently for each element in the batch.

Sampling Stage. After training the MAE, we execute the following sampling
steps: (i) Compute the brain mask B(X'), (ii) compute the integer representation
E, = e[B(X') ® X'], (iii) use Hg to sample Fsy using E; as a conditioning

4 By adding both one recovers X
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Fig. 4: Test-time De-Identification. We repeat the steps from Fig to obtain
the highly-compressed brain representation which is used as the condition in the
inference stage of the masked autoencoder. Starting from a randomly-initialized
X the network refines its estimate of how a skull around the given brain could
look like. The final de-identified scan is obtained by blending the original scan
with the last estimate X where the binary brain representation acts as a mask.
This step ensures that the brain is preserved.
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variable, and finally (iv), pass Fs through the decoder da() to recover a skull
that harmonizes well with the brain in X’. To ensure that the de-identified scan
accurately represents the real brain and not a hallucinated version thereof, we
implement a simple blending scheme in order to copy the brain from the original
X viaY = (1 — B(X)) ® dy(E3) + B(X) ® X where Ey denotes the latent as
estimated by letting the MAE condition on Ej=e;[B(X) ® X] (i.e., the brain).

4 Experiments & Conclusion

We evaluate our MRI de-identification method’s effectiveness and ability to pre-

serve the diagnostic value of the MRI retention by assessing both privacy pro-

tection and performance of downstream diagnostic tasks. This includes the seg-

mentation tasks FIRST [12] and FASTSURFER [6]) to gauge the impact of
de-identification on real-world applications, along with user and model-based
studies to determine re-identification difficulty.

Setup. Our study utilizes the ADNI [2T22] (2,172 scans) and OASIS-3 [9] (2,556
scans) datasets, with a patient-wise 80-20 train-test split. For training our net-

work, we leverage two NVIDIA RTX 4090 GPUs, each equipped with 24 GiB of
GPU memory. Our implementation relies on the PyTorch framework [I1]. We use
the inductor backend for model compilation to optimize memory consumption.

Benchmarks. Our study compares against six de-identification methods: QUICK-
SHEAR (removal), FACE MASK v1 (removal), DEFACE (removal), MRI WATER-
SHED (removes non-brain tissue), FACE MASK v2 (removal), and CP-GAN (re-
modeling) applied to 1283 and 2563 resolution images (CP-GAN is limited to
1283).
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Defeat de-identification (Human accuracy)
ADNI OASIS-3
128° 256° 128% 256°

BLACK 20.17+£25.45 20.30£26.33 18.37+£10.90 18.54+11.08
BLURRED 45.05£28.91 46.29+£29.42 41.63+£15.57 42.93 £ 18.06
ORIGINAL  55.33+30.70 58.93+29.24 61.86+15.00 59.27 & 16.94

MRI WATERSHED 19.03 +25.31  21.48 +27.25 22.56 +13.11 22.20 +14.41
~  DEFACE  4353+30.16 45.58+29.53 38.14+9.58 43.17+16.04
QUICKSHEAR ~ 38.51+£30.18 39.81+£30.43 40.70+16.68 35.85+ 13.78
FACEMASK vl  48.55+£30.49 50.24+30.54 50.23+£17.39 52.68+ 14.32
FACEMASK v2  38.05+£28.79 43.60+£29.90 33.02+17.93 35.85=+ 15.00

CP-GAN 28.46 + 27.95 X 30.47 £ 14.30 X

CP-MAE 23.14 =+ 27.88 25.91 = 27.65 22.56 & 11.77 23.41 £ 15.27

Defeat de-identification (Model accuracy)
ADNI OASIS-3
1283 256° 1283 256°

BLACK 19.66 +£2.25 18.75+2.08 19.86 £0.89 19.98 +1.19

BLURRED 87.46 £ 7.65 86.54 +8.61 97.05+2.33 97.31+1.67
ORIGINAL 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00
MRIWATERSHED 44.75 £4.09_47.03£5.06 67.76£4.39 6750739

DEFACE 99.27+0.86 99.22+1.51 99.78 +£0.36 99.85+0.20

QUICKSHEAR  98.79 £ 0.87 95.66+1.98 99.81 +£0.21 99.83+0.20

FACEMASKv1 96.31 £2.71 98.75+1.59 99.65+0.50 99.71+0.23

FACEMASKv2 94.42+5.11 98.06+1.20 99.78 £0.31 99.63 £0.29

CP-GAN 56.11 £+ 5.05 X 56.40 £ 2.89 X

CP-MAE 39.91 +9.49 41.74 1+ 6.91 48.82 1+ 4.32 58.19 + 4.04

Table 1: De-Identification Quality. We compare CP-MAE against traditional
methods, CP-GAN and four control methods (above ”- -” line) in terms of their
de-identification capabilities w.r.t. a user-based (top) and a model-based (bot-
tom) task. In both scenarios, given an MRI scan, the task is to identify the
original scan among five de-identified alternatives (four of which belong to dif-
ferent subjects). We report the rate of correct guesses (+ s.d.), thus lower scores
indicate better de-identification. ”X” indicates an unsupported resolution.

De-Identification Quality: User-based Study. In our Mechanical Turk study
appearing in Table [I| we assessed the de-identification methods’ resilience by
having human subjects attempt to defeat the de-identification by matching 3D
scans with de-identified versions from five choices, using side-profile views. Across
22,000 responses, CP-MAE excelled in de-identification, outperforming both tra-
ditional methods and CP-GAN by a substantial margin.

De-Identification Quality: Model-based Study. We also compared the pri-
vacy value of the de-identification models by using a neural network to attempt
to defeat the de-identification in a manner similar to [5] but with a more power-
ful similarity-quantification network and side (45°) instead of frontal face views
that significantly increase the level of detail. A Siamese network was trained
to recognize patient-matched images, utilizing ResNet-18 for embeddings and
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Fig.5: Downstream Tasks: Subcortical segmentation. We analyze to which
extent de-identification affects the quality of subcortical segmentation methods.
The depicted values are the class-averaged Dice scores over 15 classes for FIRST
and resp. 78 classes for FASTSURFER. To increase visual discernability we
excluded MRI WATERSHED (avg. ~ 0.21). Higher values are preferable.

computing distances with the Triplet Margin loss. Then, for each test fold, we
present a patient’s original scan and its corresponding de-identified version (us-
ing method m) along with four incorrect options randomly chosen m-renderings
from different patients. The network attempts to re-identify by selecting the
option, y, minimizing the Euclidean distance to h(z). The results in Table
show CP-MAE with the highest resistance to re-identification across the board.
DEFACE and both FACE MASK models are more easily defeated as they mainly
act on the face, enabling the network to leverage the information provided by
the side view (e.g., the ears) to determine the right identity.

Effect of De-Identification on Medical Analyses. To ensure de-identification
does not hinder medical analysis, we tested its impact using the subcortical
brain segmentation algorithms FIRST [12], and FASTSURFER [6]. The origi-
nal and de-identified scan segmentations are compared with the Dice coefficient.
CP-MAE maintained analysis integrity, outperforming other de-identification
methods on both tasks. In contrast, MRI WATERSHED significantly disrupted
downstream analyses, underscoring the shortcomings of methods that simply
retain the brain and discard everything else.

Conclusion. In this work, we introduce CP-MAE, a new technique to de-identify
MRI scans by remodeling the skull and face with a generative model. Our ap-
proach combines dual instances of VQ-VAE with an MAE that operates in a
discrete compressed latent space. This setup enables CP-MAE to stochastically
generate high-quality MR scans with the original brain content, but supporting
significantly altered external appearance. We enhance the 3D de-identification
resolution capability of CP-GAN from 1282 to 2563, achieving an eightfold voxel
increase. Our experiments confirmed CP-MAE’s superior de-identification efficacy
over competing methods. Furthermore, our analysis on standard brain analysis
tasks reveals that CP-MAE minimally impacts diagnostic accuracy. Future explo-
rations will extend to the CT imaging domain.
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