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Abstract. Chest radiography is a commonly used diagnostic imaging
exam for monitoring disease severity. Machine learning has made signif-
icant strides in static tasks (e.g., segmentation or diagnosis) based on a
single medical image. However, disease progression monitoring based on
longitudinal images remains fairly underexplored, which provides infor-
mative clues for early prognosis and timely intervention. In practice, the
development of underlying disease typically accompanies with the oc-
currence and changes of multiple specific symptoms. Inspired by this, we
propose a multi-stage framework to model the complex progression from
symptom perspective. Specifically, we introduce two consecutive modules
namely Symptom Disentangler (SD) and Symptom Progression Learner
(SPL) to learn from static diagnosis to dynamic disease development. By
explicitly extracting the symptom-specific features from a pair of chest
radiographs using a set of learnable symptom-aware embeddings in SD
module, the SPL module can leverage these features to obtain the symp-
tom progression features, which will be utilized for the final progression
prediction. Experimental results on the public dataset Chest ImaGenome
show superior performance compared to current state-of-the-art method.
Code is available at: https://github.com/zhuye98/SDPL.git.
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1 Introduction

Chest radiography has significant clinical value as the most common, relatively
low-cost diagnostic method in medical practice for diagnosing diseases like Pneu-
monia, COVID-19 and other lung ailments. Owing to these factors, many AI-
based methods for finding detection are proposed and now approaching the per-
formance level of experienced radiologists [3,1]. Although significant strides have
been made in AI-assisted segmentation and disease diagnosis, most methods
perform medical image analysis based on a single Chest X-ray. Less attention
has been paid to monitoring disease progression in a sequence of CXRs, which
is necessary for early prediction of adverse outcomes and timely intervention.
For example, routine CXRs contain temporal lung changes, which serve as vi-
tal indicators of patient outcomes [18]. However, disease progression monitoring
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presents a formidable challenge due to the complex and intricate nature of symp-
toms on CXR, which makes it non-trivial to distinguish significant changes in
longitudinal CXR with diverse symptoms. For instance, multiple symptoms can
be detected on each CXR while these symptoms exhibit intricate relationships,
and each symptom severity can dynamically change in a sequence of CXRs.

Previous works generally use a single CXR study to perform CXR screening,
precluding comparison with prior scans [16,6]. Recent works have investigated
tracking the progression of disease severity with longitudinal CXRs [2,19]. In [17],
geometric correlation maps are used for change detection relying on elaborate
feature alignment. In contrast, CheXRelNet [10] proposes to capture anatom-
ical correlation changes in CXRs based on graph attention networks, while
CheXRelFormer [15] further enhances anatomical change detection with multi-
level feature computation based on a hierarchical vision Transformer. Moreover,
[4] creates a joint representation by aligning features for equivalent anatomical
region projection in longitudinal CXRs for report generation.

In addition to chest X-rays, the detection of progression between longitudinal
patient visits has also been explored across various modalities. For example, the
dynamic abnormality detection for knee MRI scans and osteoarthritis in knee
radiographs[11,7]. Many works also focus on monitoring the progression of cog-
nitive impairment and Alzheimer’s disease using Brain structural MRI [22,12].
Retinopathy in retinal photographs has also gained considerable attention in re-
cent years since some eye diseases are irreversible [21,5,14]. Nonetheless, prior
works focus on the visual detail changes in anatomical regions. They suffer from
capturing the dynamics and correlations of diverse symptoms, which are regarded
as high-level medical semantics and closely related to disease development.

To tackle the above challenges, our motivation is from symptom-aware disease
progression modeling: As the medical manifestation of disease, the occurrence
and changes of specific symptoms reflect the development of disease in longitu-
dinal CXRs. Inspired by this, we propose an end-to-end framework that aims to
identify and disentangle the symptom-specific features for symptom-level pro-
gression modeling. Specifically, we introduce two consecutive modules namely
Symptom Disentangler (SD) and Symptom Progression Learner (SPL): (1) The
SD module explicitly extracts the symptom-specific features in each chest radio-
graph with a set of learnable symptom-aware embeddings. (2) The SPL module
learns to capture the symptom-level changes by connecting the extracted fea-
tures from two CXRs. Experimental results on the Chest ImaGenome dataset
show superior performance compared to the current state-of-the-art method.

In conclusion, our contributions can be summarized as follows: (1) We pro-
pose a novel end-to-end symptom-level progression learning framework that can
accurately capture the subtle changes in a pair of chest X-ray images. (2) Our
newly introduced Symptom Disentangler can explicitly extract symptom-specific
features from chest X-ray images, obviating the requirement for any image reg-
istration techniques. This approach fosters an optimal setting for fine-grained
disease progression learning. (3) We conduct experiments on a publicly available
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Fig. 1: Overview of the proposed framework: Two CXR images (X,X ′) are pro-
cessed by a shared Transformer encoder for tokenization and feature extraction,
where X and X ′ represent the current and the prior image, respectively. These
tokenized features are then used by the symptom disentangler to obtain dis-
entangled symptom representations. The symptom progression learner utilizes
these symptom-specific features to capture changes between the two CXR im-
ages, enabling the extraction of progression information for the final prediction.

dataset Chest ImaGenome, and experimental results demonstrate the effective-
ness of our model in predicting the progression status.

2 Proposed Method

Overview. Given a set of current-prior CXR image pairs D = {(X,X ′)i}
N
i=1

where N is the amount of image pairs, with its record of the progression sta-
tus Y prog

i,s ∈ {0, 1, 2} that indicates whether the symptom s within the image
pair is worsened, improved or stable, and a label set Y symp

j = {ysymp
j }Mj=1 for

symptom classification, where M is the total number of CXR images, ysymp
j =

[y1, . . . , yZ ] , yZ ∈ {0, 1}, and yZ = 1 indicates the presence of a corresponding
disease symptom s in the images and Z is the number of symptoms in this study,
our aim is to accurately predict the progression at a symptom-level between a
patient’s two visits.

As illustrated in Fig. 1, we introduce two consecutive modules namely Symp-
tom Disentangler (SD) and Symptom Progression Learner (SPL), and a set of
learnable symptom-aware embeddings Q ∈ RZ×8C that can explicitly extract
the symptom representation from CXR images. C is the feature dimension at
the first scale and 8C is the feature dimension of the learnable embeddings.

2.1 Symptom Disentangler

To capture the changes exhibited in patients between two visits on a more gran-
ular level, different symptoms’ features should be first located and extracted



4 Y. Zhu et al.

Fig. 2: Details of the Symptom Disentangler and Symptom Progression Learner.

from the CXR images. To this end, we initialize a set of learnable symptom-
aware embeddings to interact with the tokenized features in the Cross-Attention
(CA) modules, obtaining the corresponding attention maps for each symptom.
After applying a series of convolution operations to the obtained attention maps,
the latent representation of each symptom is derived and forwarded to the SPL
module for symptom-level progression learning.

As depicted in Fig. 2, a pair of current-prior CXR images are first passed to
the transformer encoder to get the tokenized features {T,T′} ∈ R8C×( H

32×
W
32 ).

Along with the initialized learnable embeddings Q ∈ RZ×8C as the input queries,
these obtained tokenized features are sent to a series of Multi-head Cross Atten-
tion (MCA) modules as the input keys and values to obtain the symptom-aware
attention maps. For simplicity, we illustrate the process using the tokenized fea-
ture T from the current visit as follows,

q = QWQ,k = TWK ,v = TWV (1)

Aj = CrossAttentionMapj (q,k) = qkT (2)

Asymp = MCA(q,k) = Concat (A1, ...,AN )WO (3)

where WQ, WK , WV ∈ R8C×8C′
, WO ∈ R8C′×8C are the learnable parameter

for linear projection, the d is the channel dimension 8C, 8C ′ = 8C/N , and N is
the number of heads. Aj ∈ RZ×( H

32×
W
32 ) is the attention map extracted from j-th

head. Then the attention maps are concatenated from different heads. Finally, we
can obtain the symptom-specific attention maps Asymp ∈ RZ×N×( H

32×
W
32 ) from

the multi-head perspective. To enhance information retention from the encoder
feature and extract symptom-specific representations, we further concatenate
and fuse the original tokenized feature T with the extracted attention maps via
a convolution operation:

Fsymp = Conv2D ([Asymp,T])

Fsymp = ReLU (Fsymp)
(4)
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where Fsymp ∈ RZ×C×( H
32×

W
32 ) is the obtained symptom-specific representations

after fusion. Then a classifier head is applied to get the multi-label prediction
for the symptom classification task:

ŷsymp = Classifier (pool (Fsymp)) (5)

where pool denotes the global average pooling operation.

2.2 Symptom Progression Learner

As depicted in Fig. 2, the SPL module receives the disentangled symptom-specific
representations

{
Fsymp,F

′

symp

}
from both current and prior visits. To further

capture the progression information of each symptom, we combine the represen-
tation of each symptom to obtain the symptom progression features via concate-
nation and convolution operations,

Fprog = Conv2D
([

Fsymp, F
′

symp

])
Fprog = ReLU (Fprog)

(6)

where Fprog = [Fp.1, ...,Fp.z, ...Fp.Z ] ∈ RZ×C×( H
32×

W
32 ) contains a set of

symptom progression feature vectors. Each symptom progression feature Fp.1 ∈
R1×C×(H

32×
W
32 ) contains the intricate progression information embedded within

each pair of symptom-specific features. And finally we obtain the final symptom
progression prediction by the corresponding predictor:

ŷprogz = Predictorz (pool (Fp.z)) (7)

2.3 The Overall Loss Function

The goal of our framework is to minimize the following combined objective func-
tion that contains the symptom classification task and symptom progression
prediction task:

L =
N∑
i=1

(
2∑

j=1

LBCE(ŷ
symp
i, j , ysymp

i, j ) +
Z∑

z=1

LCE(ŷ
prog
i, z , yprogi, z )), (8)

where the N and Z denote the number of CXR image pairs and the number
of symptoms, LBCE is the Binary Cross-Entropy loss function, and LCE is the
Cross-Entropy loss function.

3 Experiments

3.1 Implementation Details

For a fair comparison with the baseline CheXRelFormer [15], we utilize the same
Transformer encoder [20] without pretraining. The model is trained using an
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AdamW optimizer [13] with an initial learning rate of 6× 10−5 and a batch size
of 16. The training process takes place on a single V100 GPU for 100 epochs. The
number of model parameters of CheXRelFormer is 41.0M while ours is 32.2M,
and the computational complexity (FLOPs) of CheXRelFormer is 20.4G while
ours is 9.5G.

3.2 Dataset and evaluation metrics

This study conducts experiments on the Chest ImaGenome dataset, following
the preprocessing steps described in [15] to obtain pairs of CXR images and
corresponding progression labels (i.e., "stable," "improved," or "worsened").
Additionally, we obtain the symptom labels (referred to as "Findings") from
the MIMIC-CXR dataset [9] for each extracted CXR image in the Chest Im-
aGenome. Therefore, unlike [15] that focuses on the cross-image comparison of
nine symptoms, our study concentrates on eight unique symptoms to align with
the available symptom labels in the MIMIC-CXR dataset. Specifically, the symp-
toms of each CXR image are labeled by CheXpert labeler [8] with its status (i.e.
Positive, Negative, Uncertain and Missing). We convert the Positive and Un-
certain as 1, the Negative as 0 and ignore the Missing labeled symptom during
training.

In general, the dataset comprises 37,695 current-prior CXR image pairs, cov-
ering 8 symptoms with a progression label per symptom. In detail, the data
is divided into training (70%), validation (10%), and testing (20%) sets. Per-
formance evaluation of the progression prediction is conducted by selecting the
best model on the validation set and applying it to the test set, utilizing metrics
including Precision, Recall, and F1-score.

3.3 Experimental Results

Comparison with State-of-the-Art Method. Table 1 presents the perfor-
mance of overall progression prediction using our method and recent baseline
(CheXRelFormer). As the results show, our proposed method demonstrates a
remarkable performance surpassing the CheXRelFormer across all three pro-
gression categories. This surpass is evident in multiple evaluation metrics, in-
cluding Precision, Recall, and F1-score. Specifically, our method achieves 11.8%,

Table 1: Performance of overall progression prediction.

Methods Metrics Symptom Progression MeanWorsened Stable Improved

CheXRelFormer [MICCAI23]
Precision 0.565 0.433 0.573 0.525
Recall 0.564 0.431 0.577 0.526
F1-score 0.525 0.432 0.575 0.526

Ours
Precision 0.607 0.697 0.628 0.643
Recall 0.686 0.506 0.708 0.636
F1-score 0.644 0.587 0.665 0.633
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Table 2: Performance of symptom progression prediction.

Symptoms CheXRelFormer[MICCAI23] Ours
Mean

Precision
Mean
Recall

Mean
F1-score

Mean
Precision

Mean
Recall

Mean
F1-score

Lung Opacity 0.508 0.500 0.500 0.521 0.544 0.483
Pleural Effusion 0.574 0.552 0.561 0.569 0.612 0.574
Atelectasis 0.802 0.481 0.601 0.852 0.925 0.890
Cardiomegaly 0.656 0.508 0.544 0.683 0.727 0.670
Edema 0.674 0.542 0.587 0.642 0.720 0.678
Pneumothorax 0.420 0.402 0.408 0.470 0.485 0.321
Consolidation 0.817 0.529 0.527 0.649 0.666 0.656
Pneumonia 0.669 0.582 0.611 0.602 0.680 0.630

11% and 10.7% performance gains for average Precision, Recall and F1-score,
respectively. Furthermore, our method demonstrates a notable performance im-
provement in the "stable" category, achieving remarkable gains of over 26.4%
and 15.5% in Precision and F1-score, respectively. These results strongly indi-
cate that our approach can effectively capture the progression information and
exhibit a clearer understanding of the concept of "symptom changes".

Table 2 presents a comprehensive analysis of the progression prediction per-
formance from the symptom’s perspective. The results show that our method
consistently surpasses the baseline in mean Recall and mean F1-score. This ob-
servation highlights the consistently high performance of our method across dif-
ferent symptoms, suggesting that our method has the potential to be a valuable
tool for detecting changes in CXR associated with diverse progression dynamics.

Ablation study. In this section, we conduct experiments to investigate the
effectiveness of Symptom Disentangle and the symptom classification task by
two variants: (1) w/o Symptom Disentangler directly concatenates image-level
features for progression prediction. (2) w/o Symptom Classification excludes the
additional symptom label set during training. As Table 3 shows, when conduct-
ing progression learning solely based on image-level features, the outcomes dis-
play significantly inferior performance compared to utilizing symptom-level in-
formation. This emphasizes the importance of Symptom Disentangler in assisting
the SPL model in acquiring more fine-grained progression information, thereby
enhancing prediction accuracy. Besides, by incorporating additional symptom
classification tasks, the performance of the progression prediction experiences a
substantial improvement, with the mean F1-score rising from 56.2% to 63.3%.
This enhancement can be attributed to the effective enhancement of the SPL
module’s feature extraction capability through the symptom classification task,
enabling the identification of more subtle changes in symptom level.

Age-wise Disease Progression Analysis. We evaluate the performance of
our approach across different age groups, as shown in Figure 3(a), and compare



8 Y. Zhu et al.

Table 3: Ablation study on Symptom Disentangler and Symptom Classification
task.

Methods Metrics Disease Progression MeanWorsened Stable Improved
w/o Symptom Disentangler F1-score 0.558 0.428 0.575 0.522
w/o Symptom Classification F1-score 0.519 0.592 0.576 0.562

Ours F1-score 0.644 0.587 0.665 0.633

(a) Patient age group percentages 

(b) Progression percentage in age groups (c) Accuracy in age groups

Fig. 3: Disease progression monitoring in different age groups.

it with the CheXRelFormer. Three age groups are categorized: < 50, 50 − 70,
> 70 years. Figure 3(b) shows the diverse percentages of three disease progres-
sion categories for different age groups. Based on the observations derived from
Figure 3(c), it becomes evident that our method showcases a stable performance
in all age groups, consistently outperforming the baseline by a margin, especially
in the categories "stable".

4 Conclusion

In this paper, we propose a symptom-level progression learning framework for an-
alyzing the changes within pairs of current-prior CXR images. To achieve this, we
introduce a novel Symptom Disentangler and a Symptom Progression Learner.
The former module first explicitly locates and extracts symptom-specific fea-
tures, and the latter module utilizes the extracted symptom features to capture
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the subtle changes for accurate progression prediction. Experimental results on
the Chest ImaGenome dataset demonstrate the effectiveness of our proposed
method. Future work may explore leveraging the complex progression informa-
tion of multiple symptoms for precise outcome prediction.
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