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Abstract. Ultrasound video classification enables automated diagno-
sis and has emerged as an important research area. However, publicly
available ultrasound video datasets remain scarce, hindering progress
in developing effective video classification models. We propose address-
ing this shortage by synthesizing plausible ultrasound videos from read-
ily available, abundant ultrasound images. To this end, we introduce a
latent dynamic diffusion model (LDDM) to efficiently translate static
images to dynamic sequences with realistic video characteristics. We
demonstrate strong quantitative results and visually appealing synthe-
sized videos on the BUSV benchmark. Notably, training video classi-
fication models on combinations of real and LDDM-synthesized videos
substantially improves performance over using real data alone, indicat-
ing our method successfully emulates dynamics critical for discrimina-
tion. Our image-to-video approach provides an effective data augmenta-
tion solution to advance ultrasound video analysis. Code is available at
https://github.com/MedAITech/U_I2V.
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1 Introduction

Ultrasound imaging is widely used in clinical practice owing to its non-invasive,
radiation-free, and real-time nature. As a primary screening tool, it enables the
identification of abnormalities in major organs. However, the accurate interpreta-
tion of ultrasound images remains challenging even for experienced practitioners,
as healthy and diseased areas in images frequently demonstrate indistinguishable
appearances.

Deep learning has emerged as a promising approach for providing suggestions
to assist clinicians in their decision making. Ultrasound image classification using
deep networks has become a major research area, with state-of-the-art models
achieving impressive results [7,8]. However, since individual ultrasound images
provide limited views of lesions, aggregating multidimensional information across
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an entire ultrasound video is more advantageous for accurate automated diag-
nosis. Very recently, ultrasound video classification has become a prominent
research area [3,4,5,6]. Yet, in contrast to image datasets [12,13], publicly avail-
able ultrasound video datasets [4] remain relatively scarce and limited in size,
as ultrasound videos are often not recorded and stored. This poses significant
challenges in training deep networks for ultrasound video classification. We con-
sider alleviating this problem by utilizing a large number of existing labeled
ultrasound images rather than collecting more ultrasound videos. Synthesizing
plausible video sequences from static images is an attractive solution. By do-
ing so, we can augment training data for video classification models and thus
improve their performance.
Related work. Ultrasound image generation has been explored through physics-
based simulators [1,2,14] and registration-based approaches. Motivated by the
success of generative adversarial networks (GANs), recent works have focused
on leveraging GANs for ultrasound simulation. For instance, [15] uses a stacked
GAN model for the fast simulation of patho-realistic ultrasound images. [16]
presents a sketch GAN to synthesize editable ultrasound images and introduces a
progressive training strategy to generate high-resolution images. However, these
methods are limited to enhancing the quantity and diversity of images, not
videos.

Video-to-video translation has garnered interest in recent years. For exam-
ple, [17] presents a GAN model to enhance the video quality of handheld ultra-
sound devices. [10] introduces a causal generative model capable of modifying
cardiac ultrasound video content based on desired left ventricular ejection frac-
tion (LVEF) values. [11] transfers motion from existing pelvic ultrasound videos
to static images using key point detection and GANs. For image-to-video syn-
thesis, [9] proposes a diffusion model to generate cardiac ultrasound sequences
from ultrasound stills. However, this approach requires LVEF as an additional
input, thus limiting its application. Moreover, it is computationally expensive (8
NVIDIA A100 GPUs required). In computer vision, [18] also focuses on image-
to-video synthesis, but on natural images/videos. In this work, we are interested
in a computationally efficient ultrasound video synthesis approach operating di-
rectly on individual ultrasound images, without requiring additional inputs.
Contributions. Ultrasound video synthesis from static images is challenging,
as images lack dynamic information present in videos. To address this, we pro-
pose an approach to compensate between image and video domains for video
generation. Our key contributions are as follows:

– To our knowledge, this work represents the first attempt to leverage image-
to-video synthesis to augment training data for ultrasound video classifica-
tion. We thoroughly investigate the feasibility of this direction.

– We propose a latent dynamic diffusion model (LDDM) to translate ultra-
sound images to plausible dynamic sequences in a computationally efficient
manner.

– We demonstrate strong quantitative and qualitative results on the BUSV
benchmark. Notably, classification performance improves substantially when



Ultrasound Image-to-Video Synthesis via Latent Dynamic Diffusion Models 3

training video-based diagnostic models on combinations of real and synthetic
data, indicating our generated videos well emulate real dynamics.

2 Method

Given a starting image x0 to serve as the initial condition, our method aims
to synthesize a plausible corresponding video clip v. The inherently under-
determined nature of this problem permits the formulation of a multitude of
conceivable video predictions based on x0. As such, comprehensively model-
ing video dynamics requires information beyond what is present in the initial
seed image. To address this ill-posed problem, we propose to transform a noise
n ∼ N (0, I) into a dynamic representation by means of a conditional diffusion
model. This approach learns to harness stochastic noise to compensate for the
absence of intrinsic dynamics in the conditioning input image.

In this section, we elaborate on the two-stage framework of the proposed
LDDM and elucidate the process of video synthesis for enhancing ultrasound
video classification. Fig. 1 shows the overall training pipeline of LDDM. In the
first stage, we learn an autoencoding framework to capture intrinsic video dy-
namics within a low-dimensional latent space. Specifically, an encoder E com-
presses an input video into an embedding z, which is then decoded by D along
with the first frame x0 to reconstruct the original clip. In the second stage, we
model the latent space encoding dynamics using a conditional diffusion model,
where x0 provides image context. This allows generating latent embeddings with
realistic dynamics from Gaussian noise, conditioned solely on static images at
test time. For synthesizing novel videos, given an ultrasound image, we first
leverage the trained diffusion model to produce a latent representation z′. Then,
the trained decoder D transforms the simulated z′ and the seed image into a
synthetic video sequence.

2.1 Video Embedding

To acquire encoding and decoding capabilities for videos, we employ an autoen-
coder framework to represent video dynamics as latent embeddings. Specifically,
our encoder E is implemented as a 3D ResNet [30] (ResNet-18) in order to
capture the temporal evolution of dynamics within a video. Additionally, the
decoder D is required to reconstruct the video from the initial frame x0 as well
as the latent representation of the video. For D, we adopt an architecture con-
sisting of blocks containing AdaIN layers [29] to enable the propagation of video
information across all scales of the decoder.

2.2 Conditional Diffusion Model

Our conditional diffusion model builds on denoising diffusion-based generative
modeling [19,20]. Given a sample from a data distribution z0 ∼ q(z0), the for-
ward process of our model produces a Markov chain z1, . . . ,zT by progressively
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Fig. 1. Overview of the proposed LDDM framework.

adding Gaussian noise based on a variance schedule β1, . . . , βT . At time step
t ∈ [1, . . . , T ], the transition probability is defined as:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI) , (1)

where βt is constant. When T is sufficiently large, zT can be well approxi-
mated by a standard Gaussian. This suggests that true posterior q(zt−1|zt) can
be estimated by the learned conditional distribution pθ(zt−1|zt):

pθ(zt−1|zt) = N (zt−1;µθ(zt), σ
2
t I) , (2)

where σt is also constant. Sampling then proceeds in this reverse direction, start-
ing from zT ∼ N (0, I) and denoising step-by-step via pθ(zt−1|zt) to obtain
z0 ∼ pθ(z0).

To learn pθ(zt−1|zt), Gaussian noise ϵ is added to z0 to generate samples.
Then, conditioned on x0, a denoising model ϵθ is trained to predict ϵ by mini-
mizing the following mean-squared error loss:

L = Ez,ϵ∼N (0,I)[∥ϵ− ϵθ(z, t,x0)∥2] , (3)

where t is uniformly sampled from {1, . . . , T}.
Given an input video v, we first obtain its latent dynamic embedding z using

our trained video encoder E . The size of z is [Γ/r,H/r,W/r,C/r], where r is a
downsampling factor. This is significantly smaller than the original video size,
thereby reducing computational requirements. This embedding abstracts away
imperceptible details while retaining high-level motion and semantics. We then
map z to a standard Gaussian variable via the forward diffusion process. The
initial frame x0 serves as a conditional input to help generate an interpretable
dynamic in the latent space.

Since z encodes high-level semantic dynamics rather than spatial-temporal
details like pixel changes, its dimensions can be much lower than pixel space.
As such, the fitting objective of our diffusion model is both meaningful and low-
dimensional, easing the generation process. Conditioning on x0 allows our model
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to generate interpretable latent trajectories representing high-level dynamic se-
mantics, as x0 provides critical context for plausible video dynamics.

2.3 Video Synthesis from Single Images

We synthesize virtual video data using our trained LDDM conditioned on ex-
isting images. Specifically, given an image x, we sample a Gaussian noise and
gradually denoise it via the reverse diffusion process to obtain a synthesized la-
tent embedding z′. We then pass z′ and x through the trained decoder D to
generate a video v′. Note that the encoder E is not required at this stage.

Ultrasound videos synthesized in this manner can augment various down-
stream tasks depending on conditional images. Here, we generate videos from
breast ultrasound images to augment video classification models by balancing
classes and exposing models to diverse cross-sections. The key advantage is that
LDDM learns interpretable high-level dynamics from real videos which manifest
in synthesized videos, enabling realistic data augmentation.

3 Experiments

3.1 Datasets

We utilize the public ultrasound video dataset BUSV [4] to validate the quality
of videos generated from initial frames by our LDDM. BUSV comprises 113
malignant videos and 75 benign videos, each with a label indicating the breast
lesion type. We create three data splits by randomly selecting 70%, 50%, and
30% of the videos for training, respectively, and use the remaining videos in each
split for testing. This allows the comprehensive validation of our approach under
different data partition protocols.

Furthermore, we leverage images in the BUSI dataset [12] to synthesize more
videos for ultrasound video classification. BUSI contains 445 benign lesion images
and 210 malignant lesion images. We use all BUSI images to generate video
sequences via our trained LDDM.

3.2 Implement Details

We implement the proposed LDDM framework using PyTorch and conduct ex-
periments on a single NVIDIA RTX 3090Ti GPU. During training, videos of
arbitrary duration are segmented into clips of 48 frames, and we preprocess all
frames to have the same dimensions. We then uniformly sample 16 frames from
each clip and feed them into the encoder. We utilize the Adam optimizer with a
learning rate of 1× 10−5 for 100 iterations. For the conditional diffusion model,
we also adopt the Adam optimizer with a learning rate of 0.01 and a batch size
of 16 for 50 iterations. All classification models are trained for 50 epochs until
convergence on a single NVIDIA RTX 3090Ti GPU.
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Table 1. Quantitative evaluation of video synthesis quality. We compare our LDDM
against a previous state-of-the-art approach. Both models are conditioned on the initial
frame of a video to generate subsequent frames.

method FVD ↓ DTFVD ↓ LPIPS ↓ DIV ↑

cINN [18] 58.98 0.62 0.33 2.23
LDDM 53.82 0.58 0.32 1.07

3.3 Evaluation Metrics

We employ four common metrics to evaluate the quality of synthesized videos:
Fréchet video distance (FVD) [25], dynamic texture Fréchet video distance (DT-
FVD) [26], learned perceptual image patch similarity (LPIPS) [27], and diversity
(DIV) [28] of generated videos. FVD and DTFVD measure holistic similarity be-
tween real and synthesized videos, while LPIPS computes patch-level perceptual
differences. DIV quantifies variety across generated videos.

For video classification, we report accuracy and F1 score.

3.4 Results

Video Generation We compare our approach against cINN [18], a previous
state-of-the-art approach that makes use of a normalizing flow model for video
generation. As shown in Table 1, LDDM achieves better performance on FVD,
DTFVD, and LPIPS. On the DIV metric, cINN produces a higher diversity
score. However, we observe that in terms of downstream task performance, cINN
underperforms compared to LDDM.

This potentially indicates a deviation from realistic motion patterns of nod-
ules. In addition, we show example generation results in Fig. 2 and Fig. 3.

Synthesized Videos for Classification Due to the lack of ground truth
videos, the quality of generated videos from images in BUSI cannot be directly
evaluated using metrics such as FVD. Instead, to demonstrate the interpretabil-
ity and usability of these synthesized data, we exploit downstream tasks. Specif-
ically, we mix the generated videos with real ultrasound videos to train video
classification models. We then evaluate whether the inclusion of these synthetic
samples improves models’ performance on the BUSV test set.

We use four video classification models: C3D [21], TSM [22], TDN [23], and
ATMNet [24]. For each model, we compare training with only real videos from
BUSV against training with a mixture of real videos and synthesized samples
from BUSI. We also provide baselines trained using only synthetic data. Upon
thorough analysis in Table 2, we observe significant performance gains when
augmenting real data with generated videos. Moreover, as the amount of real
training videos decreases, the improvement from adding synthetic samples in-
creases. This indicates that the videos generated by the proposed LDDM are



Ultrasound Image-to-Video Synthesis via Latent Dynamic Diffusion Models 7

GT/generated frames1st  frame

Fig. 2. Visual examples of ultrasound video generation using the proposed LDDM
framework. The bottom row shows synthesized video frames generated by our model
conditioned on initial frames from the BUSV dataset, which are unseen during train-
ing. The top row depicts ground truth frames for reference. As evident from the visual
examples, our LDDM approach is capable of generating realistic ultrasound video se-
quences that are analogous to real ones.

Image Generated frames

Fig. 3. Visual examples of generated ultrasound videos based on images from the BUSI
dataset.

interpretable and beneficial for learning. Our method can thus serve as an effec-
tive data augmentation strategy in scenarios with limited access to real medical
video data.
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Table 2. Evaluation of video classification performance using models trained on dif-
ferent data sources: (1) real ultrasound videos only, (2) synthesized videos conditioned
on static BUSI images only, and (3) a combination of real and synthetic data. We
compare the downstream task performance of our proposed LDDM approach (black)
against cINN (gray).

real only synthetic only real+synthetic

Method real data ratio F1 Acc F1 Acc F1 Acc

C3D

7: 3 70.96 73.21 32.89 44.64 74.15 75.00
59.08 58.93 75.20 75.00

5: 5 64.85 68.81 45.42 49.46 66.67 67.74
62.58 64.52 67.92 67.74

3: 7 60.12 64.61 44.47 49.23 64.56 65.38
57.75 57.69 66.08 66.15

TSM

7: 3 78.91 78.57 67.86 67.86 76.03 76.79
72.83 72.83 80.96 80.36

5: 5 73.10 73.21 66.59 66.59 76.77 76.34
72.30 72.30 77.52 77.42

3: 7 72.96 73.07 57.30 57.30 71.83 72.31
72.59 72.59 78.96 79.23

TDN

7: 3 83.03 83.93 69.21 69.21 78.62 78.57
71.93 71.93 83.66 83.93

5: 5 72.96 72.73 69.79 69.79 76.87 77.21
71.93 71.93 80.40 78.66

3: 7 63.92 65.38 69.07 69.07 72.15 72.67
69.65 69.65 75.00 75.38

ATMNet

7: 3 72.08 73.21 69.52 69.52 73.34 75.00
70.24 70.24 78.70 78.57

5: 5 72.70 74.19 73.31 73.31 75.12 75.27
77.64 77.64 75.62 76.34

3: 7 66.91 66.92 56.19 56.19 66.91 66.92
64.97 64.97 70.72 72.31

These compelling results illustrate that LDDM can produce realistic videos
which readily transfer to downstream tasks, ultimately enhancing classification
accuracy across various models. The proposed approach shows promise in ad-
dressing the scarcity of labeled video data.

4 Conclusion

Ultrasound videos provide a more comprehensive and dynamic view of anatom-
ical structures and lesions compared to static ultrasound images. However, ac-
quiring rich ultrasound videos poses significant challenges, as only single images
are typically reported and stored in clinical practice. In this work, we propose a
generative model called LDDM to synthesize ultrasound videos from ultrasound
images using a diffusion model-based approach. By altering the input images,
high levels of variation can be introduced when generating such synthetic videos.
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We demonstrate that improvements in both video generation quality and down-
stream task performance verify the robustness and practicality of LDDM. An
interesting area for future work is prompt-driven image-to-video synthesis, where
textual prompts can control video generation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this paper.
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