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Abstract. Computed tomography (CT) plays a significant role in clini-
cal practice by providing detailed three-dimensional information, aiding
in accurate assessment of various diseases. However, CT imaging requires
a large number of X-ray projections from different angles and exposes
patients to high doses of radiation. Here we propose VolumeNeRF, based
on neural radiance fields (NeRF), for reconstructing CT volumes from
a single-view X-ray. During training, our network learns to generate a
continuous representation of the CT scan conditioned on the input X-
ray image and render an X-ray image similar to the input from the same
viewpoint as the input. Considering the ill-posedness and the complexity
of the single-perspective generation task, we introduce likelihood images
and the average CT images to incorporate prior anatomical knowledge. A
novel projection attention module is designed to help the model learn the
spatial correspondence between voxels in CT images and pixels in X-ray
images during the imaging process. Extensive experiments conducted
on a publicly available chest CT dataset show that our VolumeNeRF
achieves better performance than other state-of-the-art methods. Our
code is available at https://www.github.com/Aurora132/VolumeNeRF.

Keywords: Computed tomography reconstruction · X-ray image · Neu-
ral radiance fields · Anatomical priors · Projection attention.

1 Introduction

Computed Tomography (CT) is a popular medical imaging technique that uti-
lizes X-ray technology to produce cross-sectional images of bodies, allowing for
precise visualization of tissues. However, volumetric imaging typically requires
numerous X-ray projection views from different positions, resulting in long imag-
ing time and excessive radiation exposure to patients [14,19]. Additionally, due
to their high complexity and cost, CT scanners are not widely available, espe-
cially in less-developed regions [17]. In order to address these issues, attempts
to reconstruct CT volumes from 2D X-ray images have been made.

https://www.github.com/Aurora132/VolumeNeRF
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X-ray imaging projects all tissues onto a 2D plane, enabling the visualization
of internal structures within bodies. This imaging technique is relatively low-cost,
widely available, and exposes patients to minimal radiation doses [18]. Recently,
several methods that leverage deep learning for 3D CT volume reconstruction
from 2D X-ray images have emerged [9,21,24,20]. The main challenge of CT vol-
ume reconstruction from X-rays is the absence of depth information, rendering
it an ill-posed problem [2]. To tackle the challenge, these approaches design 2D-
to-3D network structures and train them on large-scale data to restore missing
depth information. Nevertheless, these models implicitly learned the transfor-
mation mapping from 2D to 3D without considering the spatial correspondence
between pixels in X-ray images and voxels in CT volumes. Consequently, their
performance in solving this ill-posed problem is decreased because of the failure
to introduce prior projection relationships during the imaging process.

The neural radiance fields (NeRF) [15] model is a mainstream method for
synthesizing novel views of complex scenes. NeRF represents a scene as a contin-
uous 3D volume and employs a neural network to model both the geometry and
appearance of the scene. Then NeRF uses volume rendering to integrate infor-
mation stored in the 3D volume along each viewing ray for new view synthesis.
Considering the similarity between the natural light imaging process and the X-
ray imaging process, migrating the NeRF model to CT reconstruction problems
appears feasible. However, generating such representations generally requires
multiple images from various viewpoints [16,4,8,22]. Some recent works further
study single-view NeRF models, but they mainly focus on novel-view synthesis
or surface reconstruction [3]. Considering the complexity of human anatomi-
cal structures and the demand to reconstruct 3D information inside bodies, it is
challenging to directly apply NeRF to single-view CT reconstruction. Additional
constraints and prior knowledge are needed for single-view CT reconstruction.

Considering the issues discussed above, we present VolumeNeRF, a model
that adopts NeRF to reconstruct 3D CT volumes from a single projection view.
Specifically, we design a new architecture to recover the lost depth information
from the 2D X-ray images and to generate a continuous attenuation coefficient
distribution of the corresponding scene. Then we employ volume rendering based
on the Lambert-Beer law and output a scene view with the same view direction as
the input image. This process allows for extra constraints by narrowing the gap
between the rendered and the input X-ray images. To fully utilize the similarities
of anatomical structures across different bodies, we calculate the likelihood of
the intensity of each pixel in the input X-ray image to quantify the discrepan-
cies between each individual and the group average. Subsequently, we input the
likelihood images and the average CT images into the network to incorporate
prior anatomical knowledge. Additionally, projection attention modules are pro-
posed to integrate prior projection relationships into the model and to enhance
the ability of the model in learning the spatial correspondence between voxels
from CT volumes and pixels from X-ray images. We evaluate our method on a
publicly available chest CT dataset. Qualitative and quantitative analyses are
conducted, and the results demonstrate the superiority of VolumeNeRF.
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2 Related Works

Single-view NeRF aims to produce a 3D scene representation conditioned on
one image. These methods introduce auxiliary information or self-supervision
techniques to learn relationships across scenes and focus on novel view synthe-
sis, depth estimation, and surface reconstruction [25,23,3,6]. Therefore, they are
limited in 3D volume reconstruction since CT reconstruction lacks side informa-
tion and needs to reconstruct information inside human bodies.
CT Reconstruction from X-ray has been recently studied using deep learning
[9,21,24,20,12,10,5]. These works design and train models to convert uniplanar
or biplanar X-ray images into 3D CT volumes. However, they do not incor-
porate projection or anatomical structure prior knowledge and thus lack extra
constraints during model training, resulting in a decline in model performance.
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Fig. 1. (a) Overview of VolumeNeRF; (b) Illustration of the model structure.
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3 Method

When given an X-ray image I, the goal of VolumeNeRF is to reconstruct the cor-
responding CT image Ṽ . We adopt a 3D encoder-decoder network to reconstruct
volumetric representations. Similar to StyleGAN2 [11], we utilize ConvNeXt [13]
as a 2D mapping network to condition and modulate the 3D CT reconstruction.
The generated style vectors are then fed into the 3D network to form final re-
sults. We also incorporate the X-ray likelihood image L and the mean CT image
V̄ into the model to integrate prior anatomical information. After the recon-
struction process, we obtain a 3D representation of attenuation characteristics,
which can be directly considered as the CT volume. Subsequently, we employ
volumetric rendering to synthesize an X-ray image from the same viewpoint as
the input, thus providing additional supervision signals.

3.1 Prior Anatomical Knowledge Incorporation

The anatomical structures of different human bodies typically exhibit similar-
ities, such as the number, shape, and position of organs. Leveraging this prior
knowledge can provide auxiliary information to enhance CT reconstruction. For
this purpose, we perform deformable registration to align all CT volumes and
calculate the average value of all CT images in the training set, which repre-
sents the overall distribution of materials within the human body. The mean
CT image serves as the basis for CT reconstruction and is inputted into the
3D encoder-decoder network. In addition, we compute a likelihood image L to
quantify the relationship between each individual and the population. Specifi-
cally, we assume that the attenuation coefficient distribution of each pixel p in
the X-ray image follows a one-dimensional Gaussian distribution N

(
µp, σ

2
p

)
. To

compute the parameters, mean µp and variance σ2
p, we apply maximum likeli-

hood estimation to fit the training set data to the corresponding distribution.
We utilize the negative log-likelihood function to measure the deviation of each
pixel between individuals and the population, which can be expressed as:

Lp = − log P (xp | µp, σp) = log
√
2πσ2

p +
(xp − µp)

2

2σ2
p

. (1)

A lower Lp value indicates a smaller deviation of pixel p between the current in-
put individual and the population. Therefore, voxels situated on the ray connect-
ing the X-ray source and pixel p are expected to approximate the corresponding
average value, which can be obtained from the input mean CT image.

3.2 3D Representation Generation

Downsampling Encoder and Upsampling Decoder. We design cascaded
encoders to extract multi-level information from the average CT image and learn
the coordinate projection relationship of CT reconstruction. For the i-th encoder,
the dimension increase block takes the style tensor wi as input and converts it
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into 3D. Specifically, wi is sent to a convolutional layer and expanded in the depth
direction. Then we use a set of weights to characterize the relationship between
the expanded features in this direction. The 3D feature vi−1 from the previous
encoder is downsampled using the down-sampling block. The outputs of these
two blocks are concatenated and then inputted into the fusion block to generate
new 3D feature vi. The decoder is proposed to reconstruct 3D feature maps to
the size of the input CT images. As illustrated in Fig. 1(b), each decoder takes
the style tensor and the output from the previous decoder as input and conducts
upsampling. Notably, we introduce a projection attention module in each decoder
to enhance the feature of each voxel based on the projection relationship.

Projection Attention Module. In the X-ray radiography system, the value
of pixel p is determined by the intensities of voxels located on the ray pass-
ing through it. Thus, we design the projection attention module to help the
model learn the correspondence between voxels and pixels. In the i-th decoder,
the module receives the 2D style tensor wi ∈ RC×H×W and the 3D feature
vi+1 ∈ RC×D×H×W as input. First, for each voxel in the vi+1, we calculate the
position of the intersection point between the detector plane and the ray passing
through the voxel and the X-ray source. With these results, we employ bilinear
interpolation to extract the pixel feature corresponding to each voxel from wi and
stack them based on the position number of voxels to obtain wi

v ∈ RC×D×H×W .
To enhance the learning of the spatial correspondence by the model, we draw
inspiration from DCN v2 [26] and introduce learnable offsets. Concretely, vi+1

and wi
v are concatenated and subsequently sent to two 3D convolution layers to

generate offsets △p ∈ R2K×D×H×W and weights △m ∈ RK×D×H×W :

△p = F1

([
vi+1, wi

v

])
. (2)

△m = Softmax
(
F2

([
v i+1,w i

v

]))
. (3)

Here K represents the number of related pixels. For each voxel with the location
v0 in the 3D feature map vi+1, its corresponding pixel feature y (v0) becomes

y (v0) =
K∑

k=1

△mk × wi (w0 +△pk) . (4)

Here y ∈ RC×D×H×W represents the final corresponding pixel feature map. w0

denotes the position of the intersection point between the ray passing through v0
and the detector plane. △pk and △mk are the offset and the weight of the k-th
related pixel. Finally, we concatenate the original 3D feature vi+1 and the corre-
sponding pixel feature map y and fuse them using a 3D convolutional operator,
generating the enhanced voxel feature map vi+1

y ∈ RC×D×H×W .

3.3 Volume Rendering

To introduce additional supervision information, we further apply volumetric
rendering to synthesize X-ray images Ĩ from the same viewpoint as the input I.
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Fig. 2. Illustration of the projection attention module.

Following the Lambert-Beer law, the rendering equation can be written as

I (r) = I0 (r)× exp

(
−

N∑
i=1

µiδi

)
. (5)

Here I0 (r) is the intensity of the incident beam r, and I (r) denotes its intensity
after traveling through the human body. µi represents the attenuation coefficient
of the i-th voxel through which the beam r passes, while δi is the distance that
the beam r propagates within this voxel.

3.4 Overall Objective

Our learning objective is written as follows:

Ltotal = λreconLrecon + λedgeLedge + λrenderLrender, (6)

where Lrecon, Ledge, and Lrender represent the L1 loss between the reconstructed
CT and the ground truth, the edges of the generated and real CT images (ex-
tracted using the Scharr operator), and the input X-ray image and the rendered
image, respectively. λrecon, λedge, and λrender balance these terms, with values
set to 1, 0.05, and 0.001, respectively.

4 Experiments and Results

4.1 Data and Settings

Considering the difficulty of collecting paired X-ray images and corresponding
CT scans, we employ the digitally reconstructed radiographs (DRR) technology
to produce X-ray projections following previous studies [21,24,20,12,10]. We val-
idate our model on the open source LIDC-IDRI dataset that comprises 1,018
chest CT volumes [1]. We first resample all scans to a voxel size of 2.5×2.5×2.5



VolumeNeRF: CT Reconstruction from a Single Projection View 7

mm. Due to memory limitations, we then crop an area of 128× 128× 128 voxels
from the center of each scan. Subsequently, the differentiable DRR [7] is adopted
to synthesize the X-ray image with a resolution of 128×128. We randomly divide
the dataset into a training set (865 volumes), a validation set (51 volumes), and a
testing set (102 volumes). The peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) indices are utilized for the assessment of our method.

4.2 Results

Comparison results. To demonstrate the advantages of our method, we com-
pare our VolumeNeRF with four deep learning-based single-view CT reconstruc-
tion methods: 2DCNN [9], PatRecon [21], X2CT-CNN [24], and sci-f [10].

Fig. 3. (a) Results from various approaches; (b) Visualization of offset coordinates of
two planes; (c) PCA visualization of the feature representations of testing samples.

Initially, we conduct a qualitative assessment of the reconstruction perfor-
mance of various methods. As shown in Fig. 3(a), our method exhibits a distinct
advantage in preserving edges and small anatomical structures. The first three
approaches (2DCNN, PatRecon, and X2CT-CNN) lose structural and textural
details due to the absence of prior knowledge and additional constraints. The
sci-f model leverages spatial projection relationships and retains many recon-
struction details. However, it blurs boundaries and intricate details. The sub-
sequent quantitative results are displayed in Table 1. Our method achieves the
superior performance on the PSNR and SSIM indices. Notably, there is a 12.4%
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enhancement over the second-best approach (sci-f) in SSIM, indicating that the
reconstructed CT images from our method exhibit better visual quality.

Ablation Studies. To evaluate the impacts of likelihood images (LIs), projec-
tion attention modules (PAMs), and the render loss term (RL) in our model, we
perform ablation studies, with results presented in supplementary materials and
Table 2. The reconstruction performance decreases when removing any of these
three components. We also find incorporating likelihood images leads to the most
noticeable improvement. These results show the effectiveness of integrating prior
anatomical knowledge and projection relationships into the model.

Table 1. Quantitative results, including
averages and standard deviations.

Method PSNR SSIM
2DCNN 22.42(0.24) 0.433(0.006)
PatRecon 22.75(0.21) 0.478(0.007)
X2CT-CNN 23.01(0.15) 0.542(0.005)
sci-f 24.18(0.32) 0.587(0.004)
VolumeNeRF 25.59(0.20) 0.660(0.002)

Table 2. Ablation study results, includ-
ing means and standard deviations.

Method PSNR SSIM
w/o RL 25.02(0.12) 0.607(0.004)
w/o LIs 23.87(0.26) 0.584(0.008)
w/o PAMs 24.79(0.18) 0.599(0.003)
VolumeNeRF 25.59(0.20) 0.660(0.002)

Coordinate offsets visualization. We obtain the learned offset coordinates
for two randomly chosen planes of a randomly selected testing sample and count
the number of occurrences of corresponding pixels for each voxel in these planes
separately. We visualize the results in Fig. 3(b) and observe that the offset coor-
dinates in Plane 1 are distributed on both sides of the image, while those in Plane
2 are widely distributed in the image. This conforms to the spatial projection
relationship because Plane 1 is farther from the detector plane, while Plane 2 is
closer. Intersection points between the detector plane and the rays which pass
through the X-ray source and voxels in the distant plane are more likely to fall
outside the detection range. The corresponding pixels for such voxels are located
at the edges of the X-ray image, since we manually constrain the learned offset
coordinates within the X-ray image size range. For voxels in the near plane, their
corresponding pixels are generally situated within this range.

Analysis of likelihood images. Based on our previous analysis, if a pixel
deviates from the prior distribution, its log-likelihood value increases, indicating
substantial differences between the voxels (situated on the ray connecting the
X-ray source and the pixel) of the patient and the average. To assess the impact
of likelihood images, we extract 3D feature maps from the final layer of the 3D
encoder. These maps contain high-level semantic information of volumes and
are visualized using the principal component analysis (PCA) projection after
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flattening. We categorize all testing samples into two classes based on the average
of their corresponding likelihood images. Fig. 3(c) demonstrates that volumes
with a low mean of the corresponding likelihood images (near class) are adjacent
to the average volume, whereas those with a high mean (far class) are distant
from it, as expected. The results show the effectiveness of likelihood images in
quantifying differences between each volume and the average volume.

5 Conclusion

In this paper, we present a NeRF-based model for 3D CT reconstruction from
a single-view X-ray image. To address this ill-posed problem, we compute likeli-
hood images and input them, along with the average CT images, into the network
to fully leverage the similarity of anatomical structures in human bodies. Fur-
thermore, we exploit projection attention modules to introduce prior projection
relationships. These modules can automatically learn spatial correlations be-
tween voxels from CT volumes and pixels from X-ray images. The experiments
show that our method achieves superior performance compared to others. In the
future, we plan to explore the clinical value of our method in various tasks, such
as spinal deformity classification and orthopedic preoperative evaluation.
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