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Abstract. Most existing deep learning-based medical image registra-
tion methods estimate a single-directional displacement field between the
moving and fixed image pair, resulting in registration errors when there
are substantial differences between the to-be-registered image pairs. To
solve this issue, we propose a symmetric normalization network to esti-
mate the deformations in a bi-directional way. Specifically, our method
learns two bi-directional half-way displacement fields, which warp the
moving and fixed images to their mean space. Besides, a symmetric
magnitude constraint is designed in the mean space to ensure precise
registration. Additionally, a deformation-inverse network is employed to
obtain the inverse of the displacement field, which is applied to the
inference pipeline to compose the final end-to-end displacement field
between the moving and fixed images. During inference, our method
first estimates the two half-way displacement fields and then composes
one half-way displacement field with the inverse of another half. More-
over, we adopt a multi-level strategy to hierarchically perform regis-
tration, for gradually aligning images to their mean space, thereby im-
proving accuracy and smoothness. Experimental results on two datasets
demonstrate that the proposed method improves registration perfor-
mance compared with state-of-the-art algorithms. Our code is available
at https://github.com/QingRui-Sha/HSyN.

Keywords: Symmetric normalization registration · Inverse displacement
field · Magnitude constraint · Multi-level architecture.

1 Introduction

Deformable registration is a fundamental task in various medical imaging studies
and has been actively investigated for decades [5,20,18]. It involves establishing
point-to-point spatial correspondences between the corresponding anatomies, en-
abling essential applications such as preoperative planning, group-wise analysis,
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Fig. 1. C-shape controlled experiments. When confronted with image pairs displaying
substantial shape variations, our proposed method (right) converts the registration
between image pairs into the registration of image pairs to the mean shape, utilizing
symmetric displacement fields. The mean shape shares features from both images,
facilitating the identification of corresponding points.

and follow-up study [11,19,14]. However, accurately aligning a moving image
to a fixed image is often highly challenging when confronted with significant
deformations, as shown by a toy example in the left of Fig. 1. The symmetric
normalization registration, i.e., registering image pairs to mean shape, yields su-
perior results compared to the case of directly identifying corresponding points
between the original image pairs with significant morphological differences.

The symmetric normalization registration (SyN) algorithm has made signif-
icant contributions to the field of medical image registration [2]. However, this
approach relies on iterative optimization processes to progressively refine the
estimation of the displacement field and its inverse version [7,23]. To address
the time-consuming nature of SyN, Mok et al. [16] introduce a deep learning-
based diffeomorphism network that utilizes a stationary velocity field to derive
the displacement field. Although the displacement field and its inverse version
can be rapidly obtained through the time-integration of the stationary veloc-
ity field, the accuracy of the displacement field based on the velocity field is
relatively lower compared to the case of directly estimating the displacement
field [6,12,24], and the degradation of performance is further exacerbated in
multi-level registration frameworks [17]. Additionally, the displacement field in
SyN is defined within the domain of the mean shape, and the domains of mean
shapes at different resolutions may not align perfectly. Given the current limita-
tions of deep learning-based registration algorithms, there is an urgent need for
the development of a fast and accurate method to register images symmetrically,
and meanwhile obtain the inverse displacement field effectively. It is worth not-
ing that our approach aims to symmetrically and progressively register image
pairs to an intermediate space rather than directly involving inverse consistency
registration between image pairs, as demonstrated by Greer et al. [10].

In this study, we present a novel approach for hierarchical symmetric normal-
ization registration utilizing a deformation-inverse network. Experiments con-
ducted on two datasets demonstrate superiority of our method over several
cutting-edge registration networks. The main contributions of our work can be
summarized as follows:
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Fig. 2. Schematic illustration of our method. The framework consists of two sub-
networks: 1) the symmetric normalization network, which generates symmetric half-way
displacement fields, and 2) the deformation-inverse network, which estimates the in-
verse of the displacement field. During inference, the final displacement field is obtained
by composing one half-way displacement field with the inverse of another half (dashed
box).

– We propose a symmetric normalization network to align the image pairs
symmetrically, which can improve the performance of deformable registra-
tion compared with the case of estimating the displacement field in a single
direction, especially for image pairs with large local deformations. A sym-
metric magnitude constraint loss is also designed to encourage the mean
shape to be positioned at the middle point.

– We design a deformation-inverse network to enable end-to-end estimation of
the inverse displacement field effectively, eliminating the need for reliance on
the velocity field. The network is trained based on the fundamental principle
that the composition of a displacement field and its inverse version should
yield an identity.

– A multi-level symmetric registration framework is applied to align the image
pairs hierarchically, which can further enhance both accuracy and robustness.
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2 Method

2.1 Network Overview

Fig. 2 presents a schematic representation of our proposed method. The net-
work comprises two sub-networks: 1) the Symmetric Normalization Net-
work (SN-Net) and 2) the Deformable-Inverse Network (DI-Net). The
SN-Net employs the function gθ(·, ·) to estimate symmetric half-way displace-
ment fields u

(0.5)
m f and u

(0.5)
f m by interchanging the order of moving and fixed

images Im and If , thus registering the image pairs into their mean space. Dur-
ing the training stage, the SN-Net warps the image pairs into the mean space,
and the similarity loss and regularization loss are defined in this space. On the
other hand, the DI-Net utilizes the function hξ(·) to estimate the inverse of the
input displacement field. The DI-Net is specifically designed to learn the in-
verse displacement field in an unsupervised manner. In the inference phase, our
method first estimates the two symmetrical half-way displacement fields u

(0.5)
m f

and u
(0.5)
f m using the SN-Net, and then estimate the inverse displacement field

(u
(0.5)
f m )−1 using the DI-Net. The final displacement field, u(1)

m f , is obtained by

composing u
(0.5)
m f with (u

(0.5)
f m )−1. Subsequently, the moving image Im is warped

using the spatial transform defined by u
(1)
m f .

The two sub-networks are trained independently. The details of these net-
works and their implementation will be elaborated in the following subsections.

2.2 Symmetric Normalization Network (SN-Net)

The SN-Net is constructed using convolutional neural networks (CNNs) with
a similar architecture to VoxelMorph [4]. SN-Net learns parameters θ for the
function gθ(·, ·). In gθ(·, ·), the image pairs (Im, If ) and (If , Im) are provided
as a 2-channel input, respectively. The function gθ(·, ·) generates the symmetric
half-way displacement fields u

(0.5)
m f and u

(0.5)
f m by interchanging the input order.

These displacement fields are subsequently employed to perform spatial trans-
form layer [13], registering the moving and fixed images to their mean shape.

The loss function is designed in the mean space. The basic similarity loss and
regularization loss are employed by the normalized cross-correlation Lsim(·, ·) [1]
and the diffusion regularizer Lsmooth(·) [3]. Lsim(·, ·) is utilized to penalize dis-
similarities between Im ◦ ϕ

(0.5)
m f and If ◦ ϕ

(0.5)
f m , while Lsmooth(·) is employed to

penalize spatial gradients of the displacement field.
To ensure the symmetric property, the magnitude constraint is commonly em-

ployed to constrain the modulus of the symmetric half-way displacement field,
denoted as Lmc =

1
|Ω|

∑
p∈Ω[||u

(0.5)
m f (p)||2−||u(0.5)

f m (p)||2] [16]. Here, ||u(0.5)
m f (p)||2

and ||u(0.5)
f m (p)||2 represent the modulus of the symmetric half-way displacement

field. It is crucial to encourage the corresponding anatomical points to be reg-
istered at the midpoint rather than loosely aligning them at the perpendicular
bisector. Consequently, we modify magnitude constraint loss Lmc to a symmetric
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magnitude constraint loss Lsmc. The symmetric magnitude constraint loss can
be expressed as follows:

Lsmc(u
(0.5)
m f ,u

(0.5)
f m ) =

1

|Ω|
∑
p∈Ω

[u
(0.5)
m f (p) + u

(0.5)
f m (p)]. (1)

Therefore, the final optimization problems for SN-Net can be formulated as
follows:

θ∗ = argmin
θ

{Lsim(Im ◦ ϕ(0.5)
m f , If ◦ ϕ(0.5)

f m )

+ λ1[Lsmooth(u
(0.5)
m f ) + Lsmooth(u

(0.5)
f m )] + λ2Lsmc(u

(0.5)
m f ,u

(0.5)
f m )},

(2)

where λ1 and λ2 represent the weights of different loss terms.

2.3 Deformable-Inverse Network (DI-Net)

The DI-Net shares a similar architecture to SN-Net and learns parameters ξ for
the function hξ(·). In hξ(·), the displacement field u

(0.5)
f m serves as a 3-channel

input. The function hξ(·) generates the inverse displacement field (u
(0.5)
f m )−1,

which is constrained by a composite similarity loss function Lcom and a diffusion
regularizer loss Lsmooth(·) [3].

To construct a composite similarity loss, we first need to obtain the compos-
ite displacement field Com(u

(0.5)
f m , (u

(0.5)
f m )−1) through composite transform. The

formalization of this process is as follows:

Com(u
(0.5)
f m , (u

(0.5)
f m )−1) = u

(0.5)
f m ◦ (ϕ(0.5)

f m )−1 + (u
(0.5)
f m )−1, (3)

where u
(0.5)
f m ◦ (ϕ

(0.5)
f m )−1 represents warping u

(0.5)
f m with (ϕ

(0.5)
f m )−1 using spatial

transform layer.
The solution for the inverse displacement field is based on a fundamental prin-

ciple: the composition of the displacement field and its inverse version should
be equivalent to an identity. Therefore, our composite similarity loss function
aims to penalize the mean squared voxelwise difference between the compos-
ite displacement field Com(u

(0.5)
f m , (u

(0.5)
f m )−1) and 0. Our loss function can be

formulated as follows:

Lcom(u
(0.5)
f m , (u

(0.5)
f m )−1) = MSE(Com(u

(0.5)
f m , (u

(0.5)
f m )−1),0). (4)

Therefore, the optimization problems for DI-Net can be formulated as follows:

ξ∗ = argmin
ξ

{Lcom(u
(0.5)
f m , (u

(0.5)
f m )−1) + λ3Lsmooth((u

(0.5)
f m )−1)}, (5)

where λ3 represents the regularization parameter.



6 Q. Sha et al.

Symmetric Normalization

 Network

Symmetric Normalization

 Network

(0.5)

_

(0.5)

_

u

u
m f

f m
Spatial Transform

Symmetric Normalization

 Network

Level 1

Level 3

Level 2

11

12

u
u

21

22

u
u

31

32

u
u

11 12m fI ,I 

11 21

12 22

m

f

I ,
I

 
 

Down-Sampling (4×)

Up-Sampling (4×)

Down-Sampling (2×)

Up-Sampling (2×)

m fI ,I

(0.5)

_ 11 21 31u Com(Com(u u ) u )m f , ,

(0.5)

_ 12 22 32u Com(Com(u u ) u )f m , ,

Composite Transform

Fig. 3. Implementation of the multi-level architecture for training of symmetric nor-
malization registration.

2.4 Multi-level Architecture

Multi-level registration has proven to be highly effective in both traditional image
registration and deep learning-based methods. Following the standard multi-level
registration concept, we perform symmetric normalization registration at differ-
ent resolutions. Our multi-level registration framework, as illustrated in Fig. 3,
consists of three levels. The key distinction among the levels lies in the input and
resolution of the images. Subsequently, we employ the composite transform on
the resulting displacement fields from different levels to derive the final two sym-
metric half-way displacement fields. Based on this framework, the mean space
of fixed and moving images can gradually converge to the middle point, which
can facilitate more accurate and smooth registration results.

3 Experiments

Datasets. Experiments are conducted on an in-house chest CT dataset and the
publicly available brain MRI dataset OASIS [15]. For chest CT, each patient has
two images scanned at different time points, each with annotated lung masks
and corresponding pulmonary nodules if available. Some patients have signifi-
cant respiration, which results in significant deformations in the lung field. The
dataset comprises 63 training pairs, 9 validation pairs, and 20 testing pairs. The
OASIS dataset consists of 414 T1-weighted volumes and each patient has 35
manually labeled regions of interest. The dataset is divided into training (255
volumes), validation (20 volumes), and test (139 volumes) sets. For each set,
five individuals are selected as templates, and the remaining individuals are reg-
istered to these templates. Both datasets are resampled to isotropic resolution
(1mm× 1mm× 1mm) and then perform affine registration using FreeSufer [9].
The chest CT images are cropped to the image size of 224×224×192, while the
OASIS images are cropped to the image size of 224× 192× 160.

Evaluation Metrics. To quantitatively assess the registration performance,
we utilize the Dice Similarity Coefficient (DSC) [3] to evaluate the accuracy,
which calculates the degree of overlap between corresponding regions. We also
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Table 1. Performance comparison of different registration methods on two datasets.

Methods
CT Dataset OASIS Dataset

DSC(%) ↑ TRE(mm) ↓ % of |Jϕ| ≤ 0 ↓ DSC ↑ % of |Jϕ| ≤ 0 ↓

Affine Only 85.7±6.7 9.5±5.6 - 60.2±15.7 -
ANTs SyN 94.5±2.2 2.4±1.9 < 0.00001% 77.2±2.8 < 0.0001%

VoxelMorph 93.1±2.3 3.1±2.1 < 0.001% 78.3±2.6 < 0.02%

TransMorph 94.2±2.4 2.6±2.2 < 0.2% 79.1±2.7 < 0.4%

SYMNet 93.5±2.4 2.8±2.2 < 0.001% 78.5±2.6 < 0.008%

LapIRN 94.8±2.2 1.9±1.5 < 0.1% 80.1±2.5 < 0.7%

ModeT 94.6±2.2 2.1±1.6 < 0.02% 79.3±2.7 < 0.05%

Ours 95.6 ± 1.9 1.5 ± 1.3 < 0.0002% 81.2 ± 2.3 < 0.003%

evaluate the average target registration error (TRE) [22] specifically for pul-
monary nodules in the chest CT dataset. The TRE indicates the accuracy of
registration within the lung fields. Additionally, the percentage of voxels with
a non-positive Jacobian determinant, denoted as |Jϕ| ≤ 0, is leveraged. This
metric can effectively assess the smoothness and topological preserving of the
estimated displacement field.

Implementation Details. Our method is implemented using PyTorch, utiliz-
ing the NVIDIA Tesla V100 GPU with 32GB memory. The loss weights λ1, λ2,
and λ3 are set as 1, 0.1, and 1, respectively. In the case of multi-level training
architectures, our three levels of registration are trained progressively. We initi-
ate the training process with the coarse-level networks, training them for a fixed
number of iterations before jointly training the three levels together. Additional
details can be found at https://github.com/QingRui-Sha/HSyN.

Comparison Methods. We compare our proposed method with the following
state-of-the-art registration algorithms: (1) ANTs SyN [2]: A widely recognized
traditional approach that uses SyN in the ANTs package. (2) VoxelMorph [8]: A
popular deep learning-based registration network. (3) TransMorph [6]: A regis-
tration network that combines Swin-Transformer and CNNs. (4) SYMNet [16]:
A registration network that employs a velocity field and symmetric strategy for
registration. (5) lapIRN [17]: A pyramid architecture-based large deformation
registration network. (6) ModeT [21]: A multi-level registration network that
utilizes the Transformer for motion decomposition and deformation estimation.

Quantitative and Qualitative Analysis. Table 1 has shown the quantitative
results of different methods on the chest CT and OASIS datasets. Our proposed
method demonstrates higher registration accuracy on both DSC and TRE met-
rics, with statistically significant difference. Moreover, the metric % of |Jϕ| ≤ 0
indicates that our method can estimate more smoother displacement field com-
pared with other deep learning-based registration methods. It can well preserve
the topology and even register the images with large local deformations. Fig. 4

https://github.com/QingRui-Sha/HSyN
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VoxelMorph Ours Fixed ImageANTs SyNMoving Image LapIRNSYMNetTransMorph ModeT

Fig. 4. Visual comparison of registration results by various methods on the chest CT
(top row) and OASIS (bottom row) datasets.

Table 2. Ablation experiments of network components. Lsmc, symmetric magnitude
constraint; Lmc, magnitude constraint; SN, displacement field-based symmetric nor-
malization registration; MT: multi-level training architecture.

Methods
CT Dataset OASIS Dataset

DSC(%) ↑ TRE(mm) ↓ % of |Jϕ| ≤ 0 ↓ DSC ↑ % of |Jϕ| ≤ 0 ↓

w/o Lsmc & w/ Lmc 94.9±2.2 1.9±1.5 < 0.0004% 80.4± 2.4 < 0.009%

w/o SN 94.6±2.2 2.1±1.6 < 0.1% 80.2±2.5 < 0.8%

w/o MT 94.2±2.4 2.6±2.2 < 0.0005% 79.4±2.5 < 0.01%

w/o SN & MT 93.0±2.3 3.0±2.1 < 0.001% 78.4±2.6 < 0.02%

Ours 95.6 ± 1.9 1.5 ± 1.3 < 0.0002% 81.2 ± 2.3 < 0.003%
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Fig. 5. Illustration of displacement fields, inverse displacement fields, and composite
displacement fields for the chest CT (left) and OASIS (right) datasets.

illustrates the visualized registration results obtained by different methods on
the two datasets. Our proposed method consistently aligns complex structures
well, yielding more precise registered images.

Table 2 presents the numerical results from the ablation study conducted on
each component. It can be observed that symmetric magnitude constraint Lsmc

exhibits smoother registration results with fewer voxel folding and higher accu-
racy compared to the case of using magnitude constraint Lmc. Moreover, the
inclusion of multi-level training architecture (MT) and displacement field-based
symmetric normalization registration (SN) proves to be useful in enhancing ac-
curacy, and their combination leads to further improvements in the final results.

Fig. 5 demonstrates that the effectiveness of the DI-Net. We can see that
the composition of the displacement field and its inverse version is close to the
identity. Additionally, the mean squared error between Com(·, ·) and 0 is below
0.001, indicating sub-pixel level errors in our estimated inverse displacement
field.
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4 Conclusion

In this study, we have introduced a hierarchical symmetrical registration method
using a symmetric normalization network with a deformation-inverse network.
Our method effectively addresses challenge of registration for large local defor-
mations. It also facilitates more efficient symmetric registration by introducing a
deformation-inverse network to accurately obtain the inverse displacement field.
Moreover, a multi-level registration framework is employed to further enhance
registration performance. The experimental results have shown the improved
performance of our method over representative methods in both accuracy and
smoothness.
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