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Abstract. Photon-counting computed tomography (PCCT) based on
photon-counting detectors (PCDs) stands out as a cutting-edge CT tech-
nology, offering enhanced spatial resolution, reduced radiation dose, and
advanced material decomposition capabilities. Despite its recognized ad-
vantages, challenges arise from real-world phenomena such as PCD charge-
sharing effects, application-specific integrated circuit (ASIC) pile-up, and
spectrum shift, introducing a disparity between actual physical effects
and the assumptions made in ideal physics models. This misalignment
can lead to substantial errors during image reconstruction processes, par-
ticularly in material decomposition. In this paper, we introduce a novel
detector physics and ASIC model-guided deep learning system model
tailored for PCCT. This model adeptly captures the comprehensive re-
sponse of the PCCT system, encompassing both detector and ASIC re-
sponses. We present experimental results demonstrating the model’s ex-
ceptional accuracy and robustness. Key advancements include reduced
calibration errors, enhanced quality in material decomposition imaging,
and improved quantitative consistency. This model represents a signif-
icant stride in bridging the gap between theoretical assumptions and
practical complexities of PCCT, paving the way for more precise and
reliable medical imaging.

Keywords: Photon-counting CT · Image reconstruction · Deep learning
· Material decomposition.

1 Introduction

Photon counting CT (PCCT) has been considered a revolutionary advance-
ment in clinical CT technology in the recent decade [18]. Unlike traditional
CT’s energy-integrating ones, photon-counting detectors (PCDs) directly con-
vert individual incident photons to charges and record counts according to their
energies, which eliminates electronic noise. PCDs have multiple energy bins to
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realize novel spectral CT imaging applications such as material decomposition,
virtual monochromatic imaging, and K-edge contrast imaging [14,15]. Advan-
tages of PCCTs include higher spatial resolution, better CNR, and a decrease in
iodine contrast amount and radiation dose [7].

PCCT stands out by its ability to generate ’colorful’ images [17]. It measures
the interaction of different energy X-ray photons with tissues, akin to decom-
posing an optical image into RGB components in computer vision. PCCT can
decompose human tissue images into several bases, such as water and bone, in a
process known as material decomposition [5]. This technique has diverse clinical
applications, including in CT angiography, blood pool imaging, urinary stone
characterization, and more, thereby significantly enhancing diagnostic capabili-
ties [1,10,11,12].

However, the intricacies of PCCT present significant challenges in accurately
modeling system responses. Complexities arise from physics and signal processes,
such as detector charge-sharing effects, ASIC (Application-Specific Integrated
Circuit) pile-up effects, and Compton scattering [18]. These factors make it diffi-
cult to precisely model PCCT’s response, leading to potential biases in material
decomposition and a consequent degradation in image quality. Adding to these
challenges is the variability in the behavior of individual detector pixels within
the PCCT system. Even minor differences in reality, such as variations in ASIC
dead time, play a significant role. Notably, these discrepancies are the primary
causes of ring artifacts in material decomposition images.

In addressing the challenges inherent in PCCT material decomposition, two
primary strategies are commonly adopted: image-domain and detector-domain
methods [6]. Image domain methods can be summarized as two steps: 1) image
reconstruction and 2) material decomposition [9,20]. However, image domain
methods may amplify noise and a beam-hardening effect exists [8]. On the other
hand, detector domain methods directly conduct material decomposition. How-
ever, it is challenging to accurately model those complex physics phenomena and
build the correct relationship between material depths and system counts [13,19].
Recently, deep learning has emerged as a potential game-changer for PCCT. Yet,
significant optimization is still required, notably in two key areas: first, the in-
tegration of domain knowledge. Many deep learning models are trained without
incorporating critical physics and signal processing insights, leading to potential
inaccuracies and an incomplete understanding of PCCT systems [2]. Second,
the requirement for extensive training datasets. The need for large, comprehen-
sive datasets that accurately represent clinical scenarios presents a substantial
challenge [2], often unfeasible in real-world clinical settings.

In this paper, we propose a novel physics-guided material decomposition
model for PCCT. The special features of our method can be summarized as fol-
lows: 1) Integration of extensive physics knowledge; 2) Leveraging deep learning
for complex processes, such as detector/ASIC response; 3) Incorporating critical
physics parameters, such as charge sharing effects and ASIC dead time, as inputs
to our network. This novel approach allows for a two-phased training strategy,
where the model is initially shaped by simulated data to capture the theoreti-
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cal impacts of these parameters, followed by fine-tuning through experimental
calibration to adjust for real-world deviations.

2 Method

The framework of our proposed method is illustrated in Fig. 1. Our methodology
unfolds in four steps: 1) Dataset construction, where we compile and organize
the necessary data; 2) Training of the Detector Net and ASIC Net, aimed at
learning the nuances of photon counting detector and ASIC responses under
various physics parameters; 3) Calibration to determine the optimal critical de-
tector and ASIC physics parameters through experimental means; 4) estimating
basis material depths.
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Fig. 1. Framework of our proposed method. Based on our PCCT full-chain model, we
build a large dataset to simulate the system response under different physics parame-
ters. We develop two neural networks, Detector Net and ASIC Net, designed to reflect
the underlying physical processes of the PCCT system. These networks incorporate
key physics parameters to simulate complex interactions within the system. When the
network is trained, in the ‘forward’ process, given physics parameters, the network is
expected to predict the bin counts of PCCT. In the ‘backward’ phase, given bin counts,
material depth is back-traced.

2.1 Physics Simulation Model and Dataset Construction

We have developed a comprehensive PCCT Monte Carlo model. This model
is specifically designed to simulate both the detector response and the ASIC
response of the PCCT system. In our simulation, we meticulously incorporate
the full signal processing chain. It includes X-ray energy deposition [4], charge
transportation, and the charge-sharing effect, which are crucial for accurately
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modeling the detector’s behavior. Additionally, we account for signal generation,
as well as various factors related to the ASIC, such as dead time and signal
pile-up. Furthermore, the model integrates the intricacies of count trigger level,
among other relevant parameters. By including these diverse elements, our Monte
Carlo model aims to provide a robust and realistic representation of the PCCT
system’s operational dynamics.

The system response can be represented abstractly as follows:

S(E, β, lf , L) = βNS0(E)e−µf (E)lf e−µL, (1)
Λ(L,P ) = S(E, β, lf , L) ◦D(E,P1) ◦A(E,P2), (2)

where S(E, β, lf , L) is PCCT’s tube initial spectrum S0(E) after (bowtie) filter
attenuation lf and tissue attenuation L, β is X-ray tube coefficient, N is the total
number of photons, A(E,P2) is PCCT’s ASIC response, D(E,P1) is PCCT’s
photon counting detector response, Λ(L,P ) is PCCT system counts of a single
detector, which is the composite of spectrum, detector and ASIC response. L is
tissue depths, P is related physics parameters.

In photon counting detector response D(E,P1). When X-ray photons arrive
at the detector, the detector’s semiconductor material (like CZT) will convert
photons into free electrons and holes. Due to the strong electric field on both
sides of the detector, electrons, and holes will move towards the positive and
the negative side, and this procedure follows the electron transportation partial
differential equations and hole transportation equations are similar:

∂nf

∂t
= ∇ · Jn − nf

τn
, (3)

Jn = Dn∇nf − nfµn∇ϕ, (4)
∂nt

∂t
=

nf

τn
, (5)

where nf is free electron distribution, nt is trapped electron distribution, t is
time, Jn is electron flux, τn is electron lifetime, Dn is electron diffusion coefficient,
µn is electron mobility, and ϕ is electric potential.

In ASIC response A(E,P2), we detail the ASIC’s operational workflow. The
process begins as electrical currents from detector pixels are captured by a
preamplifier, which then amplifies these signals into voltage readings. The energy
of X-ray photons is deduced by analyzing these voltage signals. Throughout this
modeling, factors such as dead time, signal pile-up, and shifts in count trigger
levels are meticulously accounted for, ensuring a comprehensive representation
of the ASIC’s functionality.

2.2 Detector Net and ASIC Net

Employing the dataset we have meticulously compiled, our next step involves the
development of both the Detector Net and ASIC Net. These networks are spe-
cially engineered to mirror the complex physics processes that are fundamental
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to the operation of the PCCT system. The design of the inputs for these net-
works is a critical aspect, ensuring they accurately capture the essential elements
of the system.

For the Detector Net, the principal input is the X-ray spectrum distributions,
which are a result of attenuation by the bowtie filter and tissue materials. This
input realistically reflects the scenarios encountered in PCCT scans, thus pro-
viding an authentic basis for simulation. Additionally, we integrate vital physics
parameters, such as the charge-sharing coefficient, into the input. This coefficient
is instrumental in determining the detector system’s behavior. Consequently, the
output of the Detector Net is a spectrum that has been altered according to the
detector’s response mechanisms, offering a representation of how the spectrum
would appear to the PCCT system after interacting with the detector.

Similarly, the ASIC Net is structured around inputs that include the X-ray
spectrum output from the Detector Net, along with critical physics parameters
such as ASIC dead time, count trigger level, and pile-up coefficient. These pa-
rameters are pivotal in dictating the ASIC’s response to the detected signals. The
output of the ASIC Net, therefore, is the bin counts that have been processed
through the ASIC response. This output encapsulates the final stage of the signal
processing within the PCCT system, translating the physical interactions into
quantifiable data suitable for image reconstruction and analysis.

In our experiment, our network consists of five convolutional layers with
a kernel size of 3 and five fully-connected networks, each layer is followed by
an activated function RELU. We choose the maximum log-Poisson as the loss
function.

In summary, our objective for these networks is to yield accurate responses
under varying physics parameters, effectively modeling the complex, non-linear
dynamics of the PCCT system. This concept can be encapsulated in the equa-
tion:

Λ̃(L,P ) = S̃(E, β, lf , L) ◦Dθ(E,P1) ◦Aθ(E,P2), (6)

where S̃(E, β, lf , L) is the empirical spectrum, Dθ and Aθ are Detector Net and
ASIC Net. This formula demonstrates our networks’ role in simulating the highly
non-linear responses characteristic of the PCCT system.

2.3 Calibration

However, in experimental scenarios, the specific parameters of the PCCT system
are not initially known. Therefore, calibration becomes essential to determine
the optimal set of physics parameters. Once the Detector Net and ASIC Net are
fixed, our task is to align the known system counts and the system’s functional
model with the real-world scenario. Essentially, given the system counts and the
functional model of the system, we aim to ascertain the most accurate physics
parameters that best fit the actual behavior of the PCCT system.

This calibration process is critical for ensuring that the deep learning model,
which has been trained on simulated data, can effectively adapt and respond
accurately in practical, experimental settings. By fine-tuning these parameters,
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we enhance the model’s capacity to replicate the complex dynamics of the PCCT
system under various real-world conditions.

To express the calibration procedure mathematically, we can say

P̃ = argmin
P

Loss(Λ, Λ̃(L,P )), (7)

and we can use the optimization method to find the optimal physics parameters
P̃ . In our paper, we use gradient descent to simplify the procedure.

2.4 Material Decomposition

Once the non-linear function Λ̃(L,P ) and its associated parameters, including
material depths and other physics parameters, are established, we are equipped
to predict the ideal counts of the PCCT system. This predictive capability is
central to understanding and accurately modeling the system’s behavior under
various conditions.

Conversely, when we have the estimated nonlinear function Λ̃, along with the
approximated physics parameters P̃ , and the observed system counts, we can
effectively reverse-engineer the process to determine the material depths L =
[l1, · · · , lk], and k = 2 in this paper. This is achieved by solving the optimization
problem:

L̃ = argmin
L

Loss(Λ, Λ̃(L, P̃ )). (8)

In this optimization framework, our goal is to minimize the loss function, which
measures the discrepancy between the actual system counts (Λ) and the counts
predicted by our model (Λ̃(L,P )). By solving this problem, we can accurately
trace back and determine the material depths.

By solving the optimization problem and finding the basis material depths,
we can use traditional image reconstruction methods like filtered back projection
(FBP) or iterative methods. In this paper, we use FBP as our image reconstruc-
tion algorithm.

3 Experiment

Utilizing a PCCT prototype system based on United Imaging’s u960+, which
has a large field of view and energy-sensitive photon-counting detectors of 2-mm-
thick cadmium zinc telluride (CZT) with two energy bins ([30, 60] and 60 keV
above), we conducted a series of calibration and material decomposition experi-
ments. The tube current is 200 mA, and the tube voltage is 140 kVp. Compared
with the typical methods, our method demonstrates reduced calibration errors,
enhanced quality in material decomposition imaging, and improved quantitative
accuracy.
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3.1 Compared Methods

Our method is evaluated against several established approaches:
Filtered back-projection (FBP):This involves applying FBP directly to raw
PCCT counts. For comparison with virtual monoenergetic image (VMI) mate-
rial decomposition results, we adjust the image levels to match.
Polynomial Correction (PC): A prevalent calibration technique, polynomial
correction [3,19] determines combination coefficients for two calibration materi-
als during calibration. These coefficients facilitate material decomposition.
Deep Learning Correction (DLC): Deep learning correction parallels poly-
nomial methods by identifying coefficients for two calibration materials in the
calibration phase [2], aiding material decomposition.

3.2 Calibration Results

Histogram of calibration error: Polyomial
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Fig. 2. Calibration results of several methods.

We conducted a series of calibration tests. These tests employed slab phan-
toms made from polymethyl methacrylate (PMMA) and aluminum (Al) in 33
combinations.

We derive the calibration counts, denoted as Λ̃, and conduct a comparison
with the actual experimental counts and other methods. As depicted in Fig. 2,
this comparison reveals that the overall error margin of our model is under 3 per-
cent. This error level is notably low, especially when contrasted with traditional
calibration methods used in PCCT systems.

3.3 Material Decomposition Results

We employed a comprehensive testing approach using a GAMMEX phantom
[16], a water phantom, and a brain phantom. All tests were conducted with a
rotation time of 2 seconds with a tube current of 200 mA. This variety of phan-
toms, each with its unique characteristics and challenges, provides a thorough
testing ground to demonstrate the versatility and efficacy of our model in a range
of realistic imaging scenarios.
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Fig. 3. Left A: 70 keV VMI results of various methods using the same data. (a) Water
phantom with CT window [-40, 40] HU; (b) GAMMEX phantom with CT window
[-100, 100] HU; (c) brain phantom with CT window [0, 80] HU. Right B: Material
decomposition results (PMMA and Al images) of our proposed method. (a) water
phantom; (b) GAMMEX phantom; (c) brain phantom.

Fig. 3A showcases the 70 keV virtual monoenergetic image (VMI) results
of material decomposition for water, GAMMEX, and brain phantom, examined
within a narrow CT window. A striking observation is the absence of ring ar-
tifacts in the images obtained through our proposed method, in stark contrast
to the traditional filtered back-projection technique and other polynomial-based
and deep-learning-based methods, which exhibit pronounced ring artifacts.

Fig. 3B displays the material decomposition outcomes for the water, brain,
and GAMMEX phantom using our model. Remarkably, our model adeptly sepa-
rates these phantoms into distinct images of ’soft’ PMMA and ’hard’ aluminum
(Al), aligning closely with our physical expectations. This successful decompo-
sition not only validates the effectiveness of our model but also illustrates its
capability to accurately differentiate between materials of varying densities and
compositions. Importantly, these results reveal the model’s considerable poten-
tial for clinical application, suggesting its capability to accurately differentiate
and visualize various tissues in medical imaging scenarios.

Table 1. Consistency check of various methods in water phantom.

ROI 1 ROI 2 ROI 3
DLC PC Ours DLC PC Ours DLC PC Ours

mean (HU) 2.95 -3.56 0.62 0.80 -0.11 0.03 3.53 -3.51 0.14
std (HU) 21.11 26.30 20.67 22.30 25.94 22.02 20.46 25.74 20.72

To evaluate the reliability and accuracy of various imaging methods, we con-
ducted a consistency check using water phantom, and regions of interest (ROIs)
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are labeled in Fig. 3B water phantom. Table 1 indicates that our method ex-
hibits a relatively lower standard deviation (std), signifying enhanced consis-
tency. Specifically, our proposed method demonstrates a minimal bias within 1
Hounsfield Unit (HU), aligning with clinical standards. This level of precision
and reliability underscores the potential of our method for clinical applications.

4 Conclusion

In summary, our method demonstrates significant promise for clinical photon
counting CT applications, characterized by the absence of ring artifacts, and
high accuracy in material decomposition using limited calibration samples.
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