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Abstract. Airway segmentation in chest computed tomography (CT) images is 
critical for tracheal disease diagnosis and surgical navigation. However, airway 
segmentation is challenging due to complex tree structures and branches of dif-
ferent sizes. To enhance airway integrity and reduce fractures during bronchus 
segmentation, we propose a novel network for airway segmentation, using cen-
terline detection as an auxiliary task to enhance topology awareness. The network 
introduces a topology embedding interactive module to emphasize the geometric 
properties of tracheal connections and reduce bronchial breakage. In addition, the 
proposed topology-enhanced attention module captures contextual and spatial in-
formation to improve bronchioles segmentation. In this paper, we conduct quali-
tative and quantitative experiments on two public datasets. Compared to several 
state-of-the-art algorithms, our method outperforms in detecting terminal bronchi 
and ensuring the continuity of the entire trachea while maintaining comparable 
segmentation accuracy. Our code is available at https://github.com/xyang-11/air-
way_seg. 

Keywords: Airway segmentation, Topology embedding, Topology enhance-
ment. 

1 Introduction 

Segmenting airways in the chest CT scans for the diagnosis and surgical treatment of 
lung disease is crucial. Accurately extracting pulmonary airways from CT and quanti-
fying morphological changes in the airways can assist doctors in diagnosing diseases 
such as idiopathic pulmonary fibrosis [1], coronavirus disease (COVID-19), and 
chronic obstructive pulmonary disease (COPD) [2]. On the other hand, accurate airway 
modeling is of great significance in bronchoscopy navigation. By modeling the airway 
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before surgery, doctors can simulate and plan the surgical route, reduce surgical risks, 
and maximize the protection of surrounding normal tissues. 

As convolutional neural networks (CNNs) are widely used in various medical image 
processing tasks, many related research studies have also emerged in the airway seg-
mentation task. Juarez et al. [3] learned topological information by stacking multiple 
graph convolutional layers to reduce false negatives in the trachea. Wang et al. [4] de-
signed a radial distance loss for tubular structures to measure the topological error of 
segmentation. Qin et al. [5] introduced anatomical priors based on feature recalibration 
and knowledge distillation to improve the network's sensitivity to the bronchi. Wang et 
al. [6] designed a bronchioles-sensitive loss function and trained a deep learning net-
work using an iterative training strategy. However, the work mentioned above partly 
added topological priors but are still insufficient for bronchioles.  

Due to the complex tree structure of airways and the specificity between different 
individuals, it is difficult to obtain complete fine-grained segmentation results. Cur-
rently, the task of accurate airway segmentation still faces the following challenges. 1) 
There is a significant difference in the total volume of the main trachea and the distal 
peripheral bronchi, resulting in a serious imbalance within the class. Fine features of 
the peripheral trachea may disappear with down-sampling and cannot be recaptured in 
the decoder part, making accurate segmentation difficult. 2) Complex tree topology, 
with terminal bronchi forming many thin and divergent branches. During the segmen-
tation of peripheral small airways, there is a recurrent phenomenon of breakage or leak-
age. 3D-UNet [7] serves as the backbone for [3-6], while the segmentation results of 
3D-UNet typically exist the airway topology breakage problem. Figure 1(b) shows the 
airway segmentation result using 3D-UNet. It produces a lot of fractures compared to 
the ground truth in Figure 1(a). 

 
Fig. 1. (a) Ground Truth of the airway. (b) Prediction of the airway using 3D-UNet trained on 
the public dataset. The blue box is the sagittal section. The red-marked area depicts the airway. 

The green arrow shows the scale difference between the trachea and the peripheral bronchi. 

To address the challenges of intra-class imbalance and bronchi breakage, we propose 
a multi-task learning approach for airway segmentation using an encoder-decoder ar-
chitecture. First, to fully use spatial perception and context awareness information, we 
introduce a topology-enhanced attention module in skip connections. The module adap-
tively fuses high-level and low-level features and makes full use of spatial information 
and semantic information to capture and locate features that are easy to disappear. In 
order to learn the global topology of the airway tree, we introduce centerline detection 
as an auxiliary task, construct a multi-task learning architecture, and further design a 
feature fusion module. The features extracted from the centerline detection task interact 
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with the airway segmentation features. Learning topological perception by introducing 
anatomical prior knowledge naturally promotes the continuity of airway segmentation, 
and reduces peripheral bronchi breakage. 

2 Methods 

The overview of the proposed method is depicted in Figure 2. We innovatively perform 
a multi-task learning network with embedded topological priors. It incorporates center-
line detection as an auxiliary task to preserve the overall connectivity of the segmenta-
tion. First, we design an interactive module to exchange features between semantic seg-
mentation and centerline detection. Second, we embed an attention module within each 
skip connection to amalgamate segmentation outputs with encoder features, selecting 
saliency for enhanced refinement. 

 
Fig. 2. The proposed network framework diagram. (a) Topology Embedded Interaction Mod-
ule. The green branch is the airway segmentation task (�), the yellow branch is the centerline 
detection task (�). (b) Topology Enhanced Attention Module. GAP is global average pooling.  

2.1 Topology Embedded Interaction Module 

Inspired by [8], we devise a Topology Embedding Interactive Module (TEIM) to cap-
ture the interplay of features between segmentation and centerline detection. Figure 
2(a) depicts the architecture of TEIM. Here, ��  � ���×��×��×�� and �� � ���×��×��×��  
denote the learned features within the segmentation task and centerline detection task, 
respectively, where �  indicates the layer number. Notations �� , �� , �� , and ��  are 
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referring to the number of channels, depths, heights, and widths of the �-th layer. ���� 
� ���×��×��×�� refers to attention features from TEIM.  

The design of TEIM is as follows: within the segmentation part, the refined features 
from TEIM are connected simply to the previous layer's S  features 
���� � �����×����×����×���� . Following this, two convolutional layers are employed to 
update the learned features ���. These updated features are then transmitted to the cen-
terline detection pathway. Conv�(·)  denotes 3×3×3 convolution，Conv�(·)  denotes 
1×1×1 convolution, and […] is the concatenation operation. 

 ��� = Conv�(Conv�[����, ����]) (1) 

The ���  concatenates the previous features ���� � �����×����×����×����  and performs 
feature fusion through convolutional operations. Subsequently, the fused features from 
� are sent back to �. They are added to ���, forming the final segmentation features ��. 

 ��� = Conv�(Conv������, Conv�(���)�) (2) 

 �� = Conv��Conv�����, ����� + ��� (3) 

Taking centerline detection as an auxiliary task, TEIM transfers features from center-
line detection to segmentation branches, thus aiming at forming a weak supervision 
signal that maintains the global topology. 

2.2 Topology Enhanced Attention Module 

The remarkable performance of U-Net heavily relies on the skip connections, which 
amalgamate low-level features from the encoder with high-level features from the de-
coder. In order to better process the complex anatomical semantic information and en-
hance the network's responsiveness to different scales of airway, we proposed a topol-
ogy enhanced attention module (TEAM) to optimize the original skip connections. 
TEAM first fuses feature maps of different scales at adjacent levels, and then uses fea-
ture recalibration to build cross-scale dependencies. By merging low-level spatial and 
high-level semantic feature maps, TEAM is used to build cross-scale dependencies and 
enhance the network's response to various airway scales. 

Figure 2(b) illustrates the architecture of TEAM. First, the encoder feature maps of 
adjacent levels are connected and the correlation of the fused feature channels is mod-
eled. The coding features of this level are expressed as �� � ���×��×��×�� . The upper 
layer encoder feature is expressed as ���� � �����×����×����×����. For the first level of 
TEAM, the input �� is defined as the down-sampling result of ��. For the other levels, 
the input ���� is the down-sampling result of ������ (the previous level's TEAM out-
put).  

 �� = �&�(������[�� + ����]) (4) 

The module first connects high-level features with rich semantic information and low-
level features with spatial information. In order to make the network to adaptively ex-
tract important features at different levels, we use feature recalibration for feature 
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response adjustment. �&�(·) stands for Project and Excite module, which shares a sim-
ilar structure with [9] and completes feature recalibration through two steps of projec-
tion and excitation. It aims to represent the features of smaller structures better. 

In order to further extract global context information, we use global average pooling 
and Sigmoid activation operations to process ��. The generated attention weight mask 
is then multiplied by the low-level features, and finally added to the high-level features 
to get ����. 

 ���� = �� + (������[�� + ����]) × �������(���(Conv_1(��))) (5) 

Ultimately, the results from both branches are merged. Guided by TEAM, ��  is en-
hanced to refine features ����, subsequently connected to the decoder for improved 
reconstruction.  

2.3 Loss Functions 

Our network has two decoders, so we choose different loss functions for the two tasks 
during training. A combination of dice coefficient loss [10] and binary cross entropy 
loss is used for the segmentation task. To maintain the topological completeness of the 
predicted airway labels, the cl-Dice loss [11] is applied to supervise the centerline in 
the topology decoder.  

We use multi-scale loss for training. After each output feature map in the decoder, a 
1×1×1 convolutional layer with sigmoid activation is added to generate the prediction 
map of each layer. The output prediction map of each layer is up-sampled to the original 
image size by bilinear interpolation, and then the loss is calculated using the ground 
truth. The multi-scale loss is calculated as follows. 

 �(�) = �(�)
���� + �(�)

��� + �(�)
������  (6) 

 ������ = ∑ �(�)  �
���  (7) 

For each layer of the decoder, the loss �(�). And � represents the weights correspond-
ing to the loss of the two tasks. � is the number of decoder layers, �(�) represents the 
loss function of the m-th layer.  

3 Experiments and Results 

Datasets and Evaluation Metrics. We evaluated the proposed method in the BAS da-
taset [12]. The dataset contains 90 CT scans, 70 CT scans were sourced from the LIDC 
[13], while the remaining 20 were obtained from the EXACT'09 [14]. It was divided 
randomly into training set of 50 cases, validation set of 20 cases, and testing set of 20 
cases after merging all 90 CT scans. The slice thickness of these scans varies from 
0.5mm to 1mm, and the voxel spacing is in the range of 0.5-0.821 mm. For topological 
accuracy, we choose pixel-level evaluation metrics: the Dice Similarity Coefficient 
(DSC), Precision (Pre), and Sensitivity (Sen). For topology completeness, we adopt 
Branches detected (BD) and Tree-length detected (TD) [15]. 
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Implementation details. We truncated the Hounsfield unit (HU) values of all scans to 
the range of [-1000, 600HU], and then normalized to [0, 1]. During the training phase, 
elastic deformation, rotation, gaussian smoothing, and gamma transformation were ap-
plied as dynamic data augmentation techniques. The proposed network was imple-
mented in PyTorch 2.1 and trained on a single NVIDIA RTX 3060. During training, 
the CT cubes were cropped to 128 × 128 × 128 as the input, and then were trained with 
a mini-batch size of 2. The optimizer used for the network is Adam, with an initial 
learning rate of 1e-3 and a weight decay of 5e-4. The maximum epoch was 300. In 
addition, we produced skeleton ground truth using the robust and widely used algorithm 
in [16]. Two authoritative doctors confirmed the accuracy of the skeleton labels. In 
inference, we obtained predictions only from the semantic segmentation head.  

 
Fig. 3. Results of airway segmentation using different methods. True positive voxels are de-
picted in red color. False positive voxels are depicted in green color. Blue circles highlight 

where our method eliminates breakage. 
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Comparative results. Apart from U-Net, we compare the original 3D U-Net [7] and 
its variants, including V-Net [10] and VoxResNet [17]. In addition, we compare with 
four relevant state-of-the-art methods in recent years: Juarez et al. [3], Wang et al. [4], 
Qin et al. [5], Wang et al. [6]. Table 1 presents the quantitative results of the compari-
sons. Our method outperforms others in DSC, BD, and TD metrics, exhibiting compet-
itive results in other metrics. The best DSC means that our network is more robust than 
other networks. Although the accuracy decreases slightly, this might be attributed to 
the model successfully detecting some real bronchi that are not correctly annotated, 
which are considered false positives during metric evaluation, resulting in the precision 
decline. 

Table 1. Results (%) of the proposed method compared to state-of-the-art methods (Mean ± 
Standard deviation) 

Method DSC Pre Sen TD BD 
3D-UNet [7] 93.88(2.35) 97.79(0.63) 90.38(4.60) 77.08(5.78) 78.35(6.88) 
V-Net [10] 92.77(2.92) 97.80(0.76) 88.42(5.65) 73.28(7.76) 75.94(7.96) 

VoxResNet [17] 94.35(1.96) 96.56(1.05) 92.33(3.95) 82.69(6.02) 84.26(5.59) 
Juarez et al. [3] 93.87(1.48) 93.85(1.20) 93.97(3.21) 83.94(5.22) 85.48(4.70) 
Wang et al. [4] 93.92(1.97) 95.49(1.25) 92.47(3.79) 86.29(5.56) 87.85(4.15) 
Qin et al. [5] 93.92(1.89) 95.50(1.22) 92.46(3.48) 86.95(5.06) 88.73 (3.91) 

Wang et al. [6] 91.63(1.35) 88.21(2.43) 95.43(2.47) 86.01(5.72) 87.78(5.23) 
Our proposed 94.41(1.78) 93.59(1.76) 95.30(3.58) 90.19(3.81) 91.96(3.31) 

Compared to other methods, our approach increases BD and TD by approximately 
4%. Since these two indicators represent the topological integrity of the airway, the 
results show that our method has good performance in the detection of peripheral bron-
chioles. The visualization results in Figure 3 further validate our method's capability to 
reconstruct more bronchi and improve the continuity of the peripheral bronchi. It re-
duces the occurrence of bronchial breakage, greatly improves topological integrity, and 
provides a more accurate fine-grained map for subsequent bronchoscopy navigation. 

Furthermore, in order to verify the robustness of the model, we conducted model 
fine-tuning  and validation on AeroPath [18], an airway dataset with pathological symp-
toms. The qualitative and quantitative results are shown in Figure A1 and Table A1 in 
the Appendix. 

Ablation study. Table 2 displays the quantitative results of the ablation experiments. 
To assess the performance of individual components, we combine the encoder with the 
single segmentation decoder as the baseline network, denoted as Base. In order to prove 
that the centerline detection task is effective in maintaining the topology of the airway, 
we add a parallel decoder for centerline detection based on Base and represented the 
model as Base-CLtask. We add TEIM to each pair of (segmentation, centerline detec-
tion) decoders and denote the model as Base-TEIM. To verify the performance of 
TEAM, we integrate it into Base without adding a centerline detection task or TEIM.  
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Table 2. Comparisons (%) of ablation experiment results (Mean ± Standard deviation) 

Method DSC Pre Sen TD BD 
Base 93.31(2.46) 97.54(0.88) 89.55(4.67) 82.49(4.73) 84.30(5.06) 

Base-CLtask 94.38(1.59) 95.28(1.40) 93.58(3.54) 86.01(4.80) 87.62(4.68) 
Base-TEIM 94.57(1.73) 95.96(1.02) 93.30(3.49) 88.59(4.48) 90.27(3.82) 
Base-TEAM 94.16(1.60) 96.25(1.31) 92.19(2.91) 86.98(2.99) 88.22(2.75) 

Base-TEIM+TEAM 94.41(1.78) 93.59(1.76) 95.30(3.58) 90.19(3.81) 91.96(3.31) 

 
Fig. 4. Comparisons of ablation experiments visualization results. True positive voxels are de-

picted in red color. False positive voxels are depicted in green color. 

Analyzing the results in Table 2, we observe that compared to Base, most indicators 
of Base-CLtask have improved. It can be inferred that adding the auxiliary task of 
centerline detection to the model will help improve model performance. Base-TEIM 
demonstrates outstanding performance in topological completeness metrics, exhibiting 
an approximate 6% improvement over the Base model. As seen from the example in 
Figure 4, Base-CLtask can learn some new connections during segmentation, and 
Base-TEIM restores more small branches, eliminates some breaks, and obtains a more 
complete topology. Base-TEAM notably outperforms other models in the sensitivity 
index, showcasing a 4.5% and 3.9% improvement over Base in TD and BD, respec-
tively. It means that Base-TEAM can detect important branches and bronchioles more 
correctly. By learning more local and global semantic information, the network is able 
to solve the problem of intra-class imbalance in the airway. The ablation experiment 
results verified the effectiveness of the proposed method.  

4 Conclusion 

In this paper, we presented a multi-task learning network to deal with bronchi breakage 
based on U-Net for airway segmentation. Centerline detection, as an auxiliary task, was 
conducted simultaneously with the segmentation task to aid the airway prediction. To 
comprehensively extract the topological information from the auxiliary tasks, the TEIM 
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was proposed to facilitate interactive feature exchange between the two tasks. Addi-
tionally, the TEAM attempted to enable the network to focus more broadly on finer 
airway branches by enhancing and refining saliency. Extensive experimental evalua-
tions demonstrated that our framework could extract a more significant number of 
branches, while maintaining competitive segmentation performance compared to other 
state-of-the-art methods. In the future, we will conduct experiments on datasets with 
abnormal tracheal structures, combining doctors' subjective evaluations and further ver-
ifying the effectiveness of our proposed method. 
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