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Abstract. Cell counting in microscopy images is vital in medicine and
biology but extremely tedious and time-consuming to perform manually.
While automated methods have advanced in recent years, state-of-the-
art approaches tend to increasingly complex model designs. In this paper,
we propose a conceptually simple yet effective decoupled learning scheme
for automated cell counting, consisting of separate counter and localizer
networks. In contrast to jointly learning counting and density map esti-
mation, we show that decoupling these objectives surprisingly improves
results. The counter operates on intermediate feature maps rather than
pixel space to leverage global context and produce count estimates, while
also generating coarse density maps. The localizer then reconstructs high-
resolution density maps that precisely localize individual cells, condi-
tional on the original images and coarse density maps from the counter.
Besides, to boost counting accuracy, we further introduce a global mes-
sage passing module to integrate cross-region patterns. Extensive exper-
iments on four datasets demonstrate that our approach, despite its sim-
plicity, challenges common practice and achieves state-of-the-art perfor-
mance by significant margins. Our key insight is that decoupled learning
alleviates the need to learn counting on high-resolution density maps di-
rectly, allowing the model to focus on global features critical for accurate
estimates. Code is available at https://github.com/MedAITech/DCL.
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1 Introduction

Counting cells in microscopy is of paramount importance in medicine and biol-
ogy [1]. Traditionally, this is done manually, but it is extremely tedious, labor-
intensive, and time-consuming. Automated cell counting is therefore vital to
many medical and research fields.

In this direction, research has made rapid advances during the past years,
driven primarily by the development of counting algorithms in computer vision.

⋆ Equal contribution.
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Given an input image, they predominantly learn to predict a full-resolution den-
sity map that encodes the quantity and spatial distribution of objects (e.g.,
people and cells) [2,3], that is to say, these methods couple counting and local-
ization via the density map. Albeit successful, current state-of-the-art methods
tend to increasingly complex designs as diverse as more network modules and
additional losses [4,5,6,7].

In this paper, we break this trend and propose a simple yet effective method
for microscopy cell counting. Specifically, we decouple counting and localization,
and devise an architecture consisting of two deep networks. The first is a counter
that takes an image as input, estimates the number of cells, and generates a
coarse, low-resolution density map as a by-product. The second is a localizer that
learns to reconstruct a fine-grained localization map conditioned on the original
image and the generated coarse density map which implies the estimated cell
count. For the counting network, in contrast to prior work performing counting
on high-resolution density maps, we propose to do so on intermediate feature
representations. Our key insight is that this allows our model to more easily
capture global features, without being overwhelmed by fine, low-level details that
may not be as relevant. The intermediate representations appear more amenable
to learning key attributes needed to produce accurate count estimates.

In addition, since convolution operations in CNNs have limited receptive
fields, upon counting touching or overlapping cells, they lack sufficient context
to robustly differentiate individual cells. Thus, we propose a global message
passing module leveraging patterns and cues across the full image to improve
counting accuracy.

We conduct extensive experiments to compare the proposed decoupled learn-
ing scheme with other counting methods that jointly learning counting and local-
ization. The competitors include conventional approaches and recent, carefully
designed, and more complex models (e.g., using sophisticated network units and
losses). From our extensive study across four cell counting datasets, DCC, ADI,
MBM, and VGG, we make the following intriguing observations:

– We find that decoupling counting and localization has surprising results,
which challenges the current common practice in cell counting.

– It is advantageous in cell counting to make use of global context. For this
reason, we propose a plug-and-play global message passing module.

– By applying our decoupled learning scheme, we achieve significantly higher
accuracy than well established state-of-the-art methods on multiple cell count-
ing benchmark datasets.

2 Methodology

2.1 Decoupling Counting and Localization

Counting and localization are two highly interrelated yet conflicting tasks in
cell counting. The former is a more coarse-grained problem that requires richer
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Fig. 1. The pipeline of the proposed method for cell counting. Unlike prior works, we
decouple counting and localization, and design an architecture with separate counter
and localizer to enable each to specialize on its target task. Moreover, we introduce a
global message passing module into the counting network to model long-range spatial
dependencies between image regions, enriching feature representations.

semantic context, while the latter is more fine-grained and demands detailed
information. To address this conflict, we apply decoupled networks. Fig. 1 shows
our method.

Counter We use a VGG-19 network [8], removing its last pooling and fully
connected layers, as the backbone for our counting network. Given an image, the
output of the backbone is upsampled by a factor of 2 using bilinear interpolation,
and then passed to the proposed global message passing module for context
modeling. Subsequently, a 1×1 convolutional layer is utilized to generate a single-
channel feature map. We make the ℓ1 norm of the flattened feature map z as
close as possible to ground truth count y using the following loss:

L = |∥z∥1 − y| . (1)

With the designed network architecture and loss, we find that the counter learns
a weak, inherent localization ability (see Fig. 2).

Localizer The counting network provides an estimate of the total number of
cells, but lacks precise spatial information to localize individual cells. To enable
localization, we employ a UNet-based network. By leveraging UNet’s capacity
for dense prediction, we can reconstruct a fine-grained localization map. Our
UNet-based localizer is trained conditioned on both the input image and the
predicted coarse density map from the counting network. Learning with this
auxiliary guidance allows the localizer to spatially distribute the estimated cell
count. We optimize the localization network using mean square error loss. Note
that ground truth localization maps are generated via convolving ground truth
dot maps with a Gaussian kernel.
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Fig. 2. Visualization of the learned single-channel feature map in the counting net-
work. Note that the counter manages to localize cells despite having no cell location
annotations at training, just cell count labels.

2.2 Global Message Passing

The proposed global message passing module consists of sampling and feature
aggregation, and its goal is to enrich feature representations with long-range
dependencies.

Sampling Each feature vector of the convolved image x is associated with a
spatial index p = (x, y). For a query feature vector xp, we consider learning a
sampling operating across grids, in order to sample relevant context features to
enable longer-range modeling. Specifically, a sampling position s can be calcu-
lated by applying the following equation:

s = p+−→ω (p) = (x, y) +−→ω |(x,y) , (2)

where −→ω = (u, v) is a moving vector. Since we would like to learn a task-driven
sampling to gather useful context, we define a learnable −→ω as follows:

−→ω = (u(xp), v(xp)) . (3)

With u(·) and v(·), the sampled position can be predicted, conditioned on the
feature of the current position. For the sake of simplicity and more efficient
computation, we consider them in the form of linear embeddings, i.e.,

u(xp) = wuxp , (4)

v(xp) = wvxp , (5)

where wu and wv are learnable weights and can be implemented as 1 × 1 con-
volutions.

Feature Aggregation This step aims at aggregating sampled features and gen-
erate new feature representations that can facilitate the subsequent cell counting
tasks.

We first revisit feature aggregation in self-attention models, which is consid-
ered the following equation:

ap =
∑
∀q

1

C
wpqxq . (6)
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Here p is a query position whose response ap is to be calculated, and q indicates
all possible positions. wpq represents the relationship between p and q. Moreover,
C is a normalization constant. Eq. (6) is a weighted sum of all feature-map
vectors, but learning pairwise relations w = {wpq} is computationally expensive.

In order to reduce the computational overhead, in this work, we perform
feature aggregation at zero parameters as follows:

ap =
∑

s∈V(p)

1

|V(p)|
xs . (7)

where V(p) is a set of sampled positions, conditioned on the position p. As
compared to Eq. (6), our method has two changes: (1) ∀q → s ∈ V(p); (2)
1
Cwpq → 1

|V(p)| . By doing so, we achieve feature aggregation in an efficient way.

3 Experiments

3.1 Experimental Setups

Datasets We evaluate the proposed method on four public benchmarks: the
Dublin cell counting (DCC) dataset [9], the human subcutaneous adipose tissue
(ADI) dataset [10], the modified bone marrow (MBM) dataset [11], and the syn-
thetic fluorescence microscopy (VGG) dataset [12]. To achieve more compelling
results given the limited size of these datasets, we partition each into training,
test, and validation sets with an approximate ratio of 10:9:1.

The DCC dataset comprises images of various cell types, including embryonic
mice stem cells, human lung adenocarcinoma, and human monocytes. Image sizes
range from 306×322 to 798×788 to increase diversity.

Sampled from high-resolution histology slides using a 1700 × 1700 sliding
window, the ADI dataset contains images with a solution of 150×150. Adipocytes
within vary dramatically in size and represent a difficult test case given that they
are densely packed adjoining cells with few gaps.

The MBM dataset consists of 11 1200 × 1200 images of bone marrow from
8 healthy individuals, cropped to 600 × 600. The standard staining procedure
depicts cell nuclei in blue and other constituents in shades of pink and red.

The VGG dataset is composed of 200 images of size 256 × 256 containing
simulated bacterial cells from fluorescence microscopy. The images include over-
lapping cells at various focal distances, simulating real-life microscopy. Each
image contains 174± 64 cells.

Table 1 provides an overview of the four datasets and their features.

Evaluation Metrics To quantify the cell counting performance of different
methods, we employ the widely used mean absolute error (MAE) and mean
square error (MSE) metrics [13,14], which measure the discrepancy between the
estimated and ground truth cell counts. The MAE is calculated as follows:

MAE =
1

N

N∑
i=1

|ŷi − yi| , (8)
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Table 1. Overview of four public datasets and their features.

Image Size Cell Count Type
DCC 306× 322 to 798× 788 34± 22 real
ADI 150× 150 165± 44 real

MBM 600× 600 126± 33 real
VGG 256× 256 174± 64 synthetic

Table 2. Quantitative comparison with state-of-the-art methods on four public
datasets. Performance is measured by MAE and MSE.

DCC ADI MBM VGG
MAE MSE MAE MSE MAE MSE MAE MSE

MCNN 5.4 6.4 25.8 35.7 3.2 4.3 20.9 25.3
FCRN 5.6 7.3 20.6 28.3 2.8 3.7 17.7 21.5

CSRNet 2.2 2.9 13.5 18.3 2.2 2.9 7.9 10.2
SFCN 2.7 3.7 16.0 22.3 2.4 3.1 13.8 17.9

DMCount 2.6 3.8 9.4 13.5 2.6 3.5 6.0 8.0
SASNet 8.9 12.0 9.0 12.2 3.9 5.2 4.9 6.8

DQN 3.5 4.6 9.7 13.1 3.1 4.2 5.5 7.3
OrdinalEntropy 3.2 4.3 9.1 12.0 2.9 3.8 5.7 7.8

DiffuseDenoiseCount 2.8 3.7 8.8 11.9 2.9 3.9 5.5 7.0
Ours 0.8 1.3 8.4 11.7 1.4 2.1 4.1 5.9

improvement 63.6% 55.2% 4.5% 1.7% 36.4% 27.6% 16.3% 13.2%

where ŷi denotes the estimated cell count for the i-th test image, and N is the
number of test images. MAE is the most commonly used metric in counting tasks.
However, a limitation of MAE is its robustness to outliers (i.e., large counting
errors). Thus, we additionally report MSE, which is more sensitive to outliers:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 . (9)

Implementation Details Due to diverse image sizes across datasets, we first
preprocess all images as follows. For the DCC dataset, which contains images of
different sizes, for each image, we pad the shorter image side to match the scale
of the longer side. Images are then resized to the nearest multiple of 256 and
divided into non-overlapping 256 × 256 patches organized in a k × k grid. ADI
images are directly resized to 256 × 256. For the MBM dataset, we divide each
1200× 1200 image into four 300× 300 patches before resizing to 256× 256.

For data augmentation during training, we utilize horizontal flipping, vertical
flipping, and 90-degree clockwise/counter-clockwise rotations.

We optimize models using Adam with a learning rate of 1e-4 and a batch size
of 8. We also employ a cosine learning rate decay scheme with warm restarts [15].
Our model is implemented in PyTorch and runs on an NVIDIA RTX 4090 GPU.
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Table 3. Ablation study results quantifying the impact of the proposed global message
passing module on four datasets.

DCC ADI MBM VGG
MAE MSE MAE MSE MAE MSE MAE MSE

w/o GMP 1.2 1.8 8.9 12.1 1.9 2.6 5.0 6.8
Full model 0.8 1.3 8.4 11.7 1.4 2.1 4.1 5.9

improvement 33.3% 27.8% 5.6% 3.3% 26.3% 19.2% 18.0% 13.2%

MBM DCC

GT: 60 Pred: 52.3 Pred: 46.4 Pred: 1.7 Pred: 3.1GT: 1

Fig. 3. Visualization of learned single-channel feature maps from counting networks
with and without the proposed global message passing module, along with the esti-
mated cell counts.

3.2 Comparison with State-of-the-Art Approaches

We compare against state-of-the-art methods including MCNN [16], FCRN [17],
CSRNet [18], SFCN [19], DMCount [20], SASNet [21], DQN [22], OrdinalEn-
tropy [23], and DiffuseDenoiseCount [24]. Quantitative results are given in Ta-
ble 2.

On DCC, our model achieves significant improvements over prior arts, reduc-
ing MAE and MSE by 63.6% and 55.2%, respectively. For ADI, we lower state-
of-the-art MAE and MSE by 4.5% and 1.7%. On MBM, our method reduces
MAE by 36.4% and MSE by 27.6% over previous best. Finally, on VGG our ap-
proach decreases MAE and MSE by 16.3% and 13.2% over state-of-the-art. The
consistent advancements across datasets validate the efficacy and generalization
of our proposed method.

3.3 Ablation Study

We validate the efficacy of our proposed global message passing module via an
ablation study, comparing models with and without this component. Removing
the module consistently degrades performance across all datasets, as measured
by MAE and MSE. For instance, we observe significant drops in MAE and MSE
on DCC (33.3% and 27.8%) and MBM (26.3% and 19.2%) when removing the
module. Although smaller, the degradation on ADI (5.6% MAE, 3.3% MSE)
and VGG (18.0% MAE, 13.2% MSE) highlights the module’s contribution to
precise cell counting. These indicate the module’s importance for modeling global
context to derive enhanced features. Fig. 3 presents a qualitative ablation study
on the effect of this module.
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4 Conclusion

In this paper, we present a decoupled learning scheme for automated cell count-
ing in microscopy images. Our approach deviates from the common practice of
jointly learning counting and density map estimation, instead decoupling these
objectives into separate counter and localizer networks. The counter operates on
intermediate feature maps to leverage global context and produce coarse density
maps along with count estimates, while the localizer reconstructs high-resolution
density maps to localize individual cells, conditioned on the input images and
coarse density maps. To further enhance counting accuracy, we introduced a
global message passing module to integrate cross-region patterns.

Through extensive experiments on four datasets, we demonstrate that our
decoupled learning approach challenges the common practice and achieves state-
of-the-art performance by significant margins, despite its simplicity.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this paper.

References

1. Guo, Y., Stein, J., Wu, G., Krishnamurthy, A.: SAU-Net: A universal deep network
for cell counting. In: ACM Conference on Bioinformatics, Computational Biology
and Biomedicine, pp. 299–306. (2019)

2. Liu, W., Salzmann, M., Fua, P.: Context-aware crowd counting. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5099–5108. (2019)

3. Cheng, Z.Q., Li, J.X., Dai, Q., Wu, X., Hauptmann, A.G.: Learning spatial aware-
ness to improve crowd counting. In: IEEE/CVF International Conference on Com-
puter Vision, pp. 6152–6161. (2019)

4. Wang, Z., Yin, Z.: Cell counting by a location-aware network. In: Machine Learning
in Medical Imaging, pp. 120–129. (2021)

5. ldughayfiq, B., Ashfaq, F., Jhanjhi, N.Z., Humayun, M.: YOLOv5-FPN: A robust
framework for multi-sized cell counting in fluorescence images. Diagnostics 13(13),
2280 (2023)

6. Ma, Y., Sanchez, V., Guha, T.: FusionCount: Efficient crowd counting via multiscale
feature fusion. In: IEEE International Conference on Image Processing, pp. 3256–
3260. (2022)

7. Lin, W., Chan, A.B.: Optimal transport minimization: Crowd localization on density
maps for semi-supervised counting. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21663–21673. (2023)

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

9. Marsden, M., McGuinness, K., Little, S., Keogh, C.E., O’Connor, N.E.: People,
penguins and petri dishes: Adapting object counting models to new visual domains
and object types without forgetting. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8070–8079. (2018)

10. Cohen, J.P., Boucher, G., Glastonbury, C.A., Lo, H.Z., Bengio, Y.: Count-ception:
Counting by fully convolutional redundant counting. In: IEEE International Con-
ference on Computer Vision Workshops, pp. 18–26. (2017)



Rethinking Cell Counting Methods: Decoupling Counting and Localization 9

11. Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use
regression to detect cells. In: International Conference on Medical Image Computing
and Computer Assisted Intervention, pp. 276–283. (2015)

12. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances
in Neural Information Processing Systems, pp. 1324–1332. (2010)

13. Sam, D.B., Surya, S., Babu, R.V.: Switching convolutional neural network for
crowd counting. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5744–5752. (2017)

14. Liu, J., Gao, C., Meng, D., Hauptmann, A.G.: DecideNet: Counting varying density
crowds through attention guided detection and density estimation. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5197–5206. (2018)

15. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

16. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting
via multi-column convolutional neural network. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 589–597. (2016)

17. Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with
fully convolutional regression networks.: Computer Methods in Biomechanics and
Biomedical Engineering: Imaging & Visualization 6(3), 283–292 (2018)

18. Li, Y., Zhang, X., Chen, D.: CSRNet: Dilated convolutional neural networks for
understanding the highly congested scenes. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1091–1100. (2018)

19. Wang, Q., Gao, J., Lin, W., Yuan, Y.: Learning from synthetic data for crowd
counting in the wild. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8198–8207. (2019)

20. Wang, B., Liu, H., Samaras, D., Nguyen, M.H.: Distribution matching for crowd
counting. In: Advances in Neural Information Processing Systems, pp. 1595–1607.
(2020)

21. Song, Q., Wang, C., Wang, Y., Tai, Y., Wang, C., Li, J., Wu, J., Ma, J.: To choose
or to fuse? Scale selection for crowd counting. In: AAAI Conference on Artificial
Intelligence, pp. 2576–2583. (2021)

22. Lu, H., Liu, L., Wang, H., Cao, Z.: Counting crowd by weighing counts: A sequential
decision-making perspective. IEEE Transactions on Neural Networks and Learning
Systems, 35(4), 5141–5154 (2022)

23. Zhang, S., Yang, L., Mi, M.B., Zheng, X., Yao, A.: Improving deep regression with
ordinal entropy. arXiv preprint arXiv:2301.08915 (2023)

24. Ranasinghe, Y., Nair, N.G., Bandara, W.G.C., Patel, V.M.: Diffuse-Denoise-Count:
Accurate crowd-counting with diffusion models. arXiv preprint arXiv:2303.12790
(2023)


	Rethinking Cell Counting Methods: Decoupling Counting and Localization

