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Abstract. Deep Vein Thrombosis (DVT) presents a high incidence rate
and serious health risks. Therefore, accurate staging is essential for for-
mulating effective treatment plans and enhancing prognosis. Recent stud-
ies have shown the effectiveness of Black-blood Magnetic Resonance
Thrombus Imaging (BTI) in differentiating DVT stages without neces-
sitating contrast agents. However, the accuracy of clinical DVT staging
is still limited by the experience and subjective assessments of radiol-
ogists, underscoring the importance of implementing Computer-aided
Diagnosis (CAD) systems for objective and precise DVT staging. Given
the small size of thrombi and their high similarity in signal intensity
and shape to surrounding tissues, precise staging using CAD technology
poses a significant challenge. To address this, we have developed an inno-
vative classification framework that employs a Global-Local Feature Fu-
sion Module (GLFM) for the effective integration of global imaging and
lesion-focused local imaging. Within the GLFM, a cross-attention mod-
ule is designed to capture relevant global features information based on
local features. Additionally, the Feature Fusion Focus Network (FFFN)
module within the GLFM facilitates the integration of features across
various dimensions. The synergy between these modules ensures an ef-
fective fusion of local and global features within the GLFM framework.
Experimental evidence confirms the superior performance of our pro-
posed GLFM in feature fusion, demonstrating a significant advantage
over existing methods in the task of DVT staging. The code is available
at https://github.com/xiextong/VDPF.
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1 Introduction

Deep Vein Thrombosis (DVT) is a vascular condition characterized by a high
risk of recurrence. Its incidence increases with age [6,3,7]. Clinically, DVT is
categorized into acute, sub-acute, and chronic stages, with treatment response
varying across these stages. Acute thrombosis requires rapid thrombolytic treat-
ment due to its tendency to dislodge and cause pulmonary embolism. However,
such therapy is less effective in the chronic stage. Therefore, precise staging of
DVT is critical for determining optimal treatment and enhancing prognosis [12].
Digital Subtraction Angiography (DSA) is recognized as the gold standard for
diagnosing DVT. But it requires the use of a contrast agent, which may cause re-
nal damage. Recently, the Black-blood Magnetic Resonance Thrombus Imaging
(BTI) has been shown to distinguish the stage of DVT without contrast agent,
particularly in the chronic stage. In addition, BTI is non-invasive and capable
of providing excellent soft tissue contrast. Nevertheless, the precision of clinical
DVT staging is still limited by the radiologists’ experience and subjectivity.

In practice, radiologists frequently use muscle signal intensity as a crucial
reference for BTI-based DVT staging [11]. Thrombi usually display equal or
greater signal intensity than adjacent muscle tissue. Nonetheless, delineating
muscle tissue manually will significantly increase the workload [13,8].

At present, the implementation of Computer-aided Diagnosis (CAD) systems
for DVT staging remains undocumented. However, certain researchers have in-
vestigated the potential applications of CAD systems for various issues associ-
ated with DVT. For example, a study successfully applies the Deep Semantic
Segmentation Feature-Based Radiomics framework to predict the effectiveness of
thrombolytic therapy for DVT. Its Area Under the Curve (AUC) value reaches
0.919 [5]. Additionally, an innovative generative adversarial network based on
3D U-net, specifically designed for the automatic segmentation of DVT in BTI,
demonstrates excellent results. This method achieves good results on the test
set and two other external test sets, with accuracy (ACC) values of 0.96, 0.94,
and 0.95. It introduces a novel diagnostic tool for DVT [9].

These studies underscore the potential of CAD system applications in DVT
image analysis. However, the application of CAD systems to DVT image analysis
faces several challenges. As shown in Fig. 1, the high similarity in signal intensity
and shape of DVT to other tissues, along with the small size of thrombi, hinders
the network’s focus. Furthermore, the prevalent practice of lesion-centered image
cropping in small-target classification tasks may result in the loss of crucial
information, such as muscle signals and edema, restricting the model’s capacity
to learn features pertinent to DVT staging. Therefore, it is paramount to retain
essential diagnostic information for staging without overburdening physicians.

The contributions of this paper are summarized in three main aspects. (1) To
our knowledge, this is the initial application of CAD technology in the field of
DVT staging using BTI. (2) We have developed an innovative predictive frame-
work for DVT staging tasks based on Vision Transformer (ViT) and Global-Local
Feature Fusion (GLFM), aimed at enhancing the accuracy of DVT staging. This
framework optimizes the staging prediction process by integrating information
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Fig. 1. Challenges in staging DVT.

from both global imaging and lesion-focused local imaging. (3) Our proposed
GLFM, leveraging a cross-attention module and the Feature Fusion Focus Net-
work (FFFN), efficiently integrates global and local imaging features. This fusion
strategy effectively combines global and local information. Experimental results
demonstrate the superior performance of our framework, offering significant im-
provements over existing technological approaches in DVT staging tasks.

2 Methods

2.1 Overview of Framework

The proposed VDPF framework is shown in Fig. 2. In practice, radiologists ana-
lyze not only localized lesion information such as the degree of vascular occlusion
but also global information like muscle signal intensity and edema conditions.
Therefore, we first slice the 3D data to obtain global images I and local images
I1,. The ViT-based dual-branch backbone network separately extracts features
from Is and Iy, obtaining global features F¢ and local features Fy. Then, Fy,
and Fg are fed into the Global-Local Feature Fusion Module (GLFM) to fuse
features. The fused features are processed through a fully connected layer to
obtain the DVT staging prediction for that slice. Finally, the average of the
predictions from each slice is calculated to obtain the overall staging prediction
result.

2.2 Global-Local Feature Fusion Module

The GLFM is designed to fully leverage the complementary nature between
global and local features, thereby enhancing the model’s predictive accuracy
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Fig. 2. The VDPF framework consists of the ViT-based dual-branch backbone network,
GLFM, and a fully connected layer. The design of the GLFM aims to fully exploit the
complementarity between global and local features, consisting of Self-Attention, Cross-
Attention, and FFFN modules.

for DVT staging. GLFM initially inputs both Fp and F¢g in parallel to self-
attention and cross-attention block. The self-attention block enables the model
to reinforce the internal relevance of features and highlight the essential ones.
At the same time, F and Fg are integrated in a cross-attention block. To
exchange information between Fj and Fg by calculating the impact of local
features on global features. By concatenating the outputs of the self-attention
and cross-attention block, we obtain the feature Fo. These features are then
input into the Feature Fusion Focus Network (FFFN) and then undergo a series
of pooling and convolution processes, enabling refined encoding and integration
across spatial and depth dimensions. Features across dimensions are integrated
and enhanced to better support accurate DVT staging.

Cross-Attention block consists of self-attention block, local-to-global atten-
tion block, multi-layer perceptron (MLP) block, and global-to-local attention
block. In self-attention block, F, is transformed into three vectors Qr, Kr, Vi,
through three separate linear layers. Subsequently, @; and K}, are multiplied to
obtain attention scores. A scaling factor is applied to the attention scores. The
softmax function is used for normalization to generate attention weights for each
element towards others. Finally, the output attention weights are multiplied by
V1, to produce the final output Fy,_g. In the local-to-global attention block, Fj_g
is transformed into @y.g through a linear layer, while Fig is converted into Kg
and Vg via two separate linear layers. The subsequent operations mirror those
in the self-attention module. Finally, we obtain Fj.s by adding the input and
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output of the local-to-global attention block together.

Qr-sKt
Vd

The MLP, consisting of two fully connected layers and a GELU function, is
employed to uncover crucial features and enhance their non-linearity. Fy.g is
input into the MLP layer and undergo a residual operation, then yield Fy_g.ps.

Fr_¢ = Softmax ( > Ve + Fr—s (1)

Fi—c-n = Ly(GELU (L1 (Fp_g))) (2)

Here, L; and Ly are two fully connected layers.

Through linear transformations, Fj_.g.p is transformed into Kj_g.p and
Vi-c-m, while Fg is transformed into )g. These vectors serve as inputs for the
global-to-local attention module, which processes them into the output Foposs-

QGK%—G—M

Vd

In the FFFEN block, the feature F¢o with dimensions B x N x D undergoes global
average pooling across N and D to yield two vectors (B x N x 1 and B x D x 1).
These are then combined, processed through convolutional and nonlinear layers
to extract deeper-level features, resulting in two vector types, Wy and Wp. Both
undergo normalization and convolution with a residual operation. Then they are
transformed into weights using a Sigmoid function. Finally, F¢ is multiplied by
these weights to produce the output.

Feross = Softmax ( ) Vi—g-m + Fo (3)

3 Experimental Results

3.1 Materials

We collect a DVT dataset from 196 patients at the Affiliated Panyu Central
Hospital of Guangzhou Medical University, obtaining pelvis, thigh, and calf sec-
tions via BTI sequence. Considering the lower MRI sensitivity of the calf, it’s
excluded. The dataset is segmented into 223 training, 75 validation, and 75 test
cases, resulting in 68,361 training slices, 18,901 validation slices, and 20,663 test
slices. This segmentation allows for precise DVT evaluation and treatment plan-
ning. Image examples are in Fig. 3. I}, is obtained by retaining only the regions
within the bounding boxes manually annotated by radiologists around thrombus
areas. Dataset details are in Table 1. We use the consensus of two experienced
radiologists as the ground truth for staging, aligning with clinical standards.
Implementation details are as follows: The data augmentation strategies en-
compass spatial transformations, color adjustments, noise addition, and resam-
pling transformations. The batch size for training is set to 24. An early stopping
strategy is employed to dynamically adjust the epoch value during training,
with backpropagation occurring every five iterations. The Adam optimizer is
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Fig. 3. Representative images of the pelvic and thigh. The original image represents
the global image. The annotated image emphasizes the DVT area. The local image
solely preserves the rectangular region of DVT.

Table 1. Classification Statistics for dataset. Number of cases in Parentheses.

Acute Sub-acute |Chronic |Total

Training |14641(43)[44231(139)]9489(41) |68361(223)
Validation|4335(15) [11895(47) [2671(13) |18901(75)
Test 4036(14) [13462(47) [3165(14) |20663(75)
Total 23012(72)|69588(223)|15325(68)|107925(373)

used to train VDPF, with a learning rate of 0.0001, a weight decay coefficient
of 0.000001, and a momentum value of 0.99. Furthermore, we adopt a learning
rate adjustment strategy to achieve more refined training control and better
convergence outcomes. A warm-up strategy is implemented during the first 10
training epochs, followed by gradual adjustment of the learning rate using a co-
sine annealing strategy. We train comparison models using 2D images cropped
around lesion centers, involving: 1) Slicing 3D volumes for 2D images; 2) Ex-
tending bounding boxes by 5 pixels; 3) Cropping and resizing to 224x224. Other
training parameters match those of the VDPF. All experiments are conducted
in PyTorch using an NVIDIA Corporation Device 2230. ACC and the F1 score
are used to evaluate the performance of the VDPF multi-classification model.

3.2 Ablation Study

In this study, we examine the effects of Resnet and ViT backbones on VDPF
model performance. Table 2 shows that ViT significantly boosts accuracy on both
validation and test datasets, with validation set accuracy rising from 72.0% to
81.3% and test set accuracy from 69.3% to 80.0%. This improvement is likely due
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to ViT’s ability to capture global contextual information through its attention
mechanism, contrasting with Resnet’s focus on local features through convo-
lutions. ViT’s global approach is especially advantageous for medical imaging,
enhancing diagnostic accuracy by analyzing complex data patterns and regional
relationships.

Table 2. Impact of different Blocks on Model Performance.

Methods Validation Test

ACC (%)|F1-Score (%)|ACC (%)|F1-Score (%)
Resnet-DPF 72.0 75.4 69.3 65.9
ViT-DPF(VDPF)|81.3 80.8 80.0 80.0
VDPF-CA 78.7 79.0 70.7 71.2
VDPF-CAT 52.0 53.1 45.3 46.5
VDPF-SC 80.0 79.1 4.7 74.5

Additionally, we investigate the impact of changing the input sequence of
local and global features within the cross-attention module [4], which we refer
to as VDPF-SC. The results on the test set show a 5.3% decrease in model
ACC. This decrease could be due to the rich information content in the global
images, which correlates with the local images. In contrast, when information
from the local images relevant to the global context is extracted, the noise in the
global images may cause interference, thus complicating the feature extraction
process. In addition, we conduct two experiments to assess the FFFN'’s efficacy.
Initially, we replace the FFFN module with the Coordinate Attention module,
referenced in literature as VDPF-CA. Then, we explore inputting the combined
feature F, directly into a fully connected layer for classification, termed VDPF-
CAT. The VDPF-CA model shows a 9.3% decrease in accuracy on the test set,
which we attribute to the original setup’s normalization across two dimensions,
likely diminishing the impact of smaller features during processing. Similarly,
the VDPF-CAT model records an accuracy of only 45.3%, affected by variations
in feature data distribution. For example, features from local images with back-
ground noise removed may be smaller, whereas global features often have larger
values, leading to a diminished contribution of local features in the final linear
layer. These experiments highlight the superiority of our proposed module.

As is shown in Table 3. To delve deeper into the impact of distinct feature
inputs on the effectiveness of the model, we experiment with several combina-
tions of features. These include global features refined through a self-attention
module(denoted as F), local features similarly processed (labeled as F_g), and
Fross, which is honed using a cross-attention module. The table meticulously
documents the outcomes of these experiments. An examination of each feature
input indicates that F;_g often has a significant impact, aligning with our ex-
pectations, as the features derived from lesion-focused imaging tend to carry less
redundant information and noise, thereby simplifying the model’s interpretation
process. Comparative analysis of the data from rows two, four, six, and seven of
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the table shows that adding Fg.g to F_g generally reduces model performance,
while Feyoss minimally affects it. However, the concurrent input of all three
types of features yields the best outcome, implying that Fg.s and Fopess may
have a synergistic effect during feature fusion, possibly by mitigating noise from
the global imaging background. This hypothesis gains further support when con-
sidering the comparative data in rows one, three, and five, where the combined
input of Fg.g and F¢pess enhances model performance beyond what is achievable
with individual inputs. It is on this basis that the simultaneous incorporation of
Fa.s, Fr.s, and Foposs into the model achieves the most optimal performance.

Table 3. Impact of Feature Input Combinations on Model Performance.

Methods Validation Test
ACC (%)|F1-Score (%)|ACC (%)|F1-Score (%)

Fas 70.7 68.4 62.7 61.7
Frs 81.3 81.9 77.3 77.8
Feross 73.3 71.6 69.3 69.0
Fa.s+FL-s 80.0 80.1 74.7 74.9
Fa.s+Fcross 77.3 77.3 4.7 74.6
Fr-s+Fcross 80.0 79.3 78.7 78.6
Fas+Fr-s+Fcross|81.3 80.8 80.0 80.0

3.3 Comparison with Other Methods

We compare VDPF with several other classic classification methods, as shown
in Table 4. VDPF outperforms the other methods on both the training and
validation sets. It may effectively utilize the complementarity between global
and local information, allowing the network to better focus on localized lesion
information and related global information (such as muscle signal intensity).

Table 4. Results of different methods.

Methods Validation Test

ACC (%)|F1-Score (%)|ACC (%)|F1-Score (%)
Resnet50 [2] 78.7 79.7 69.3 69.8
ViT [1] 78.7 78.3 733 73.2
Efficientnet-b0 [10]|76.7 75.8 78.7 77.9
VDPF 81.3 80.8 80.0 80.0

4 Conclusions

We pioneer the exploration of applying CAD for BTI-based DVT staging. Facing
the challenges of employing CAD in this domain, we specifically developed an
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innovative classification framework that integrates global imaging with lesion-
focused local imaging for precise DVT staging. This framework utilizes a dual-
branch structure with shared weights for image features extraction and employs
a GLFM for efficient features integration. Crucially, the cross-attention block
within GLFM allows for the capture of relevant global features information based
on local features, while the FFFN further enhances features integration by amal-
gamating different dimensional features. Experimental validation demonstrates
the significant superiority of our proposed method over existing technologies.
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