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Abstract. Understanding the transport of molecules in the brain in
vivo is the key to learning how the brain regulates its metabolism, how
brain pathologies develop, and how most of the developed brain-targeted
drugs fail. Two-photon microscopy — the main tool for in vivo brain imag-
ing — achieves sub-micrometer resolution and high image contrast when
imaging cells, blood vessels, and other microscopic structures. However,
images of small and fast-moving objects, e.g. nanoparticles, are ill-suited
for analysis of transport with standard methods, e.g. super-localization,
because of (i) low photon budgets resulting in noisy images; (ii) severe
motion blur due to slow pixel-by-pixel image acquisition by two-photon
microscopy; and (iii) high density of tracked objects, preventing their in-
dividual localization. Here, we developed a deep learning-based estimator
of diffusion coefficients of nanoparticles directly from movies recorded
with two-photon microscopy in vivo. We’'ve benchmarked the method
with synthetic data, model experimental data (nanoparticles in water),
and in vivo data (nanoparticles in the brain). Our method robustly esti-
mates the diffusion coefficient of nanoparticles from movies with severe
motion blur and movies with high nanoparticle densities, where, in con-
trast to the classic algorithms, the deep learning estimator’s accuracy
improves with increasing density. As a result, the deep learning-based
estimator facilitates the estimation of diffusion coefficients of nanoparti-
cles in the brain in vivo, where the existing estimators fail.
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1 Introduction

The low treatment efficiency of progressive and fatal neurodegenerative disor-
ders, e.g., Alzheimer’s disease and Parkinson’s disease, is partly due to many
transport barriers along the delivery routes of the drugs [10]. To identify and
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study these barriers, one needs to estimate diffusion coefficients (DCs) of poten-
tial drugs, e.g., brain-targeted nanoparticles (NPs), locally, near individual cells
or blood vessels [7].

A commonly used approach estimates the diffusion coefficient of an NP by
fitting a straight line to the graph of its mean-squared displacement as a function
of time [11,7]. Maximum-likelihood estimators give unbiased estimates of DCs
with the lowest variance compared to other estimators. This, however, requires
accurate localization and identification of the NPs, and using a suitable physical
theory for the studied motion, which is only possible in relatively simple systems,
e.g., freely diffusing molecules, diffusion of a molecule on a fluctuating substrate
[16] or diffusion of a molecule confined in a volume of a simple shape [9].

Recent work has shown that deep learning (DL) can aid prediction of diffusive
behavior. For example, DL methods have been shown to able to (i) classify based
on particle trajectories if diffusive behavior is anomalous or confined [6, 3], (ii)
predict diffusion behavior in porous media directly from the structure of the
media [17,2], (iii) infer time-varying diffusion properties from trajectories [12],
and (iv) predict DCs when particles undergo flow and thermal gradients at high
signal-to-noise ratios [13].

Here we introduce a deep learning-based estimator (DLE) tailored for esti-
mating DCs of NPs directly from images recorded with two-photon microscopy
(2PM) in the brain in wvivo. Such images are often distorted by high motion
blur and high NPs density within the imaging volume. High motion blur occurs
because 2PM is scanning microscopy (Fig. 1AB), which records images pixel-
by-pixel (much slower than wide-field imaging). High NP density can occur near
vessel walls, where their diffusion is limited [8], near a damaged blood-brain
barrier (BBB) leading to a release of NPs from blood into the brain, or near a
dead-end of the brain extracellular spaces (ECS), where NPs get stuck and can-
not escape. High motion blur and high NP densities restrict the use of classical
diffusion estimation in vivo typically due to the inability to accurately localize
NPs on recorded images. Furthermore, linking positions of NPs into trajectories
becomes ambiguous and eventually fails when the distance between neighboring
NPs on the images becomes comparable or less than an average displacement of
NPs between consecutive movie frames.

DLE estimates DCs of NPs directly from recorded movies, skipping the lo-
calization of NPs on individual images (Fig. 2A). As a result, DLE, trained
on simulated data, estimated DCs more precisely than the standard particle-
tracking methods, especially so when images are corrupted by high motion blur
and when the density of NPs is high.

2 Materials and methods

2.1 Two-photon microscopy

We used a commercial (Olympus, Japan) two-photon microscope (FVMPE-RS),
equipped with a Ti:Sapphire laser and GaAsP detectors (photomultiplier tubes;
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Fig. 1. Image acquisition with two-photon microscopy (2PM). A. A schematic
of an in vivo experimental setup: 2PM records images of quantum dots (QDs) inside
the brain of a living, anaesthetised mouse by sweeping the laser beam across the brain
and collecting fluorescence emitted by the QDs. B. In scanning microscopy (confocal,
2PM) images are recorded one pixel at a time by moving the laser beam along straight
lines (solid red). Between the lines, the beam is retraced (dashed red) for unidirectional
scanning. C. An image of a QD in the brain of a mouse, showing high motion blur: The
QD moves between the recording of two consecutive image lines. D. An image of several
QDs in the brain of a mouse, showing overlapping fluorescence intensity distributions
when multiple QDs move close to each other. Pixels on images are 200 nm wide.

PMTs). We used QTracker655 quantum dots (QDs; ThermoFisher Scientific,
USA) and FluoSpheres nanobeads (NBs; ThermoFisher Scientific, USA) for in
vivo brain and in vitro (beads in water) experiments, respectively.

2.2 Animals and surgical procedures

All protocols involving mice were approved by the Danish National Committee
on Health Research Ethics, in accord with the guidelines of the European Coun-
cil’s Convention for the Protection of Vertebrate Animals used for Experimental
and Other Scientific Purposes, and complied with the ARRIVE guidelines. We
used five male wild-type mice (C57bl/6j; Janvier-labs) and followed standard
acute surgery [7]. We injected QDs intravenously and released them in the brain
parenchyma by ablating a small capillary with high laser power.

2.3 Synthetic data generation

The simulation of realistic 2PM images (training data) of random walkers con-
sisted of four steps. First, we simulated isotropic free diffusion in 3D space by
adding normally distributed displacements with zero expected value and vari-
ance (same for each of the three coordinates), 02 = 2DAt, where D is the DC
and At is the time step. Second, we simulated pixel-by-pixel image acquisition,
where a pixel with row and column indexes r and ¢, respectively, is recorded at
time t,. = to+ (rC+c)/v+7r, where v is the laser beam scanning speed, 7 is the
retracing time (Fig. 1B), and R, C are the total numbers of rows and columns
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in an image. We trained our network on a small window size, which required
a trivial adjustment of ¢,. depending on the cropping size of the experimental
videos. Third, we calculated the expected value of a pixel I,.. assuming the 3D
Gaussian point-spread function [14] with STDs o, = 0, = 04, for the focal
plane and o, in the direction of the principle axis of the objective (z-axis).
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where Iy, 149 are the background and QDs intensities, respectively, and the
index p runs over all QDs. We used experimentally measured PSF parameters,
0y = 0.2 pm and o, = 1.4 pm from [8], but add variation by sampling from a
normal distribution with standard deviation 0.05 pm for o4, and 0.2 um for o,.
Forth, we added noise to each pixel by sampling a Poisson-distributed random
number with expected value I,.. (see above) to simulate shot noise and, finally,
added Gaussian noise to simulate other remaining sources of noise (e.g. read-out
noise of the detector). See SI for code.

For validation, we have generated two datasets of synthetic movies: A dataset
consisting of 25,000 videos with low DCs sampled uniformly between 0 and
1.5 um?/sec, and a dataset consisting of 25,000 videos with high DCs sampled
uniformly between 0 and 50 um? /sec. In the paper we refer to these two datasets
as low diffusion coefficient and high diffusion coefficient datasets.

2.4 Neural architecture

The input to our network is a sequence (a movie) of gray-scale images of shape
(T, W, H) (time, width, height). For training, we used T" = 400 images of size
W = H = 20 pixels. Our network consists of (Fig. 2A): (i) An auto-encoder (five
standard convolutional layers, with GeLU activations) that maps the images to
a latent dimension h = 128; (ii) A deep 1D resnet [5] which performs convolu-
tions along the temporal dimension (we used seven resnet layers, each with two
convolutions, and initial kernel size of seven time steps); (iii) An adaptive aver-
age pooling along the temporal dimension, which enables generalization beyond
a fixed movie length; and (iv) a simple multi-layered perceptron (MLP), which
outputs both an estimate of the DC D and of the error of the estimate &. Both
outputs, the diffusion coefficient and the estimated erro,r are constrained to be
positive by using the nonlinearity f(xz) = 1 4+ ELU(x). The full networks are
provided as PyTorch code in the SIL.

The encoder network is trailed separately to minimize an autoencoder L2
loss. We use an Adam optimizer with learning rate 5 - 10~* and take 5,000
steps of batch size 512. We train the predictor network to maximize a Gaussian
likelihood, corresponding to minimizing the loss

N A
_ 1 (D; — D;)? .
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which combines an L2 loss on the diffusion coefficient estimation while simulta-
neously punishing mistakes in the error prediction. The network is trained for
25,000 steps with batch size 50 using an Adam optimizer with learning rate 0.01.

3 Results

Figure. 2A shows the architecture of DLE (Methods) and compares it with a
standard data analysis pipeline for estimating DCs of particles from their images.
DLE requires annotated data for training, which is a challenge because a typical
in vivo experiment generates only small volumes of data, not enough for the
training and, most importantly, one cannot annotate DCs, D, for in vivo data
as there is no alternative method to measure D. Therefore, we generated realistic
2PM images of a population of random walkers with known DCs (see “Methods:
Synthetic data generation”). Figure 2BC illustrates the visual consistency of
experimental and synthetic images at both low and high DCs.

First, we tested the performance of DLE on synthetic data against a very
common maximum-likelihood, sub-pixel single-particle tracking estimation of
the DCs [1], implemented by using the Python TrackPy package. We refer to
this method as to the “classic” method (estimator) in the paper. Table 1 shows
the average performances of DLE for the synthetic movies with low DC, which
should be compared to the zero-knowledge baselines (i.e. always guessing the
mean of the prior), e.g. L1 = (J — 0.75]), = 0.375. DLE outperforms the classic
estimator by 50% on the entire dataset, based on L loss. In experimental movies
with low NP densities many movie frames do not show any NPs and so do the
synthetically generated images. Because empty images may comprise up to half
of the generated images, we also evaluated the models on the 50% of the dataset
where they performed best, chosen according to their own output error 6. Here,
DLE improved estimation of the DCs by 134% in L; and by 500% in Lo loss,
compared to the classic estimator (Table 1). For the synthetic data, generated
with high DCs, DLE improved the estimation by 322% in L; and by 1020% in
L5 loss in DLE, compared to the classic estimator (Table 1).

Second, we compared the performance of DLE to the classic estimator for an
increasing number of NPs seen in the synthetic images. To do that, we calculated
the performance as a function of the number of possibly visible NPs in the
synthetic videos, for low and high DCs (Fig. 3AB). We evaluate this by, for
each frame of the synthetic input video, finding the number of NPs that are
within the imaging volume of the microscope’s objective, meaning that x,y—
coordinates of the NPs are within the image z,y ranges and that NPs are in
focus, i.e., their z-coordinates are no further away from the focal plane than 1
STD of the microscope’s PSF (o0,; see Methods). Summing this over the entire
video clip estimates the number of possibly visible transitions (although some
might be heavily obscured by noise). The number of transitions is proportional
to NP density on average, but better captures average information availability in
the videos. We will use the NP density and number of transitions interchangeably
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Fig. 2. Architecture of the deep-learning-based estimator (DLE) and gener-
ation of the training data. A. In classic estimation, the positions of particles are
estimated on every image of a movie, the positions are linked into trajectories, and DCs
are estimated from these trajectories. DLE estimated DCs directly from raw experi-
mental movies without the need for localization of particles on individual movie frames
(see Methods for details). B,C. Examples of real experimental images (top rows) and
simulated images (bottom row) for low (B; QDs in the brain) and high (C; nanobeads
in water) DCs. Magenta and white show low and high fluorescence intensity, respec-
tively. Pixels on images are 200 nm wide.

below. DLE outperforms the classic estimator over the entire studied range of NP
densities (more than two orders of magnitude range). Naturally, both methods
perform the worst when there are very few NPs visible in some of the images,
i.e., there is very little information about their transport (Fig. 3AB). The low
diffusion dataset contains high-density videos, and here the classic approach
also performs poorly when there are many NPs visible on single images, which
decreases tracking accuracy. In contrast, DLE’s performance keeps increasing
even at the highest densities (Fig. 3A).

Third, we’ve shown that DLE returned correct DCs of 50-nm diameter nano-
beads in water, where we calculated an estimated true theoretical DC of the
nanobeads using the Stokes—Einstein equation (Fig. 3C). The images of nanobeads
in water are so severely corrupted by the motion blur (Fig. 2C), classic tracking
algorithms, based on blob-detection, fail to localize them because they don’t
image like blobs. Instead, the images of single nanobeads sometimes show multi-
modal intensity distributions without a clearly defined center.
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All Top 50%
Ll L2 £ L1 L2 [,
Low diffusion coefficients
Baseline 0.375 0.187 -0.33 / / /
Classic 0.163 0.0588 -1.33 0.0860 0.0138 -1.71
DLE 0.109 0.0351 -2.12 0.0368 0.0023 -2.82
Difference (%) 50 67 / 134 500 /
High diffusion coefficients
Baseline 12.5 208 3.17 / / /
Classic 13.4 301 56.3 12.3 294 106
DLE 5.72 64.9 1.82 2.91 18.6 1.12
Difference (%) 118 220 / 322 1020 /

Table 1. Comparison of DLE with classical DC estimation [1], evaluated on syntheti-
cally generated movies with high and low DCs. The full dataset includes many empty
frames that skew the results of both methods negatively. The top-50% column is eval-
uated only on half the dataset, self-chosen by & of the models. Columns are average
Ly, L; losses and Gaussian likelihood loss, £, as defined in Eq. (2).

Finally, we used DLE to estimate DCs of QDs in the brain ECS of living,
anaesthetised, mice in vivo before and after heart stop. Before stopping the heart,
we estimated DCs from three movies recorded in the same brain location: D =
0.87+0.08, 0.78+£0.08, and 0.8040.09 pm?/s (first three points in Fig. 3D)). The
values are consistent with a single value and fall into the range of DCs measured
previously for similar QDs in the brain [4][Fig.2B]|. After the heart stop, DCs of
the QDs fell to zero, D = 0.00440.012 um? /s, (last point in Fig. 3D), consistent
with shrinking brain ECS [15], where QDs diffuse. Last but not least, DLE could
estimate DCs of QDs in another region of brain ECS, D = 0.338 4+ 0.015 um? /s
(also consistent with [4][Fig.2B]), despite many overlapping QDs on individual
images. Classic estimators rely on a search range parameter (how far away from
a current position should we search for a particle on the next image) for linking
positions of NPs into trajectories. DCs estimated by the classic estimator were
unreliable: The estimates varied by more than one order of magnitude with
increasing search range (Fig. 3E).

4 Discussion

We have developed a robust and eflicient tool for estimating DCs of NPs from
microscopic images, where standard particle tracking methods fail, i.e., from im-
ages characterized by high motion blur and high particle densities. Such images
occur often in in vivo experiments: When imaging mouse brains with 2PM, the
image sampling rate is initially low due to pixel-by-pixel image acquisition and



8 JB. Kirkegaard et al.

A low diffusion coefficient B high diffusion coefficient
0.4 35 7
304 —— baseline
- classic
254 = DLE
20
I
151
10
5
0L
10! 102 103
# Transitions # Transitions
C 12 D E
o 1.0 15
g 101 " | 4 ° 2 + classic
I L H S |-oe
= 8 £ = 1.0
5 2 K9]
© L 05 ©
5 ° 5 5
8 8 8 0.5
o o o U.
5 4 5 &
.% @ _%
=] =] >
= £ 0.0 £ 0.0
5 2 [a) T T T T T a Y T T T T T
0 10 20 30 40 10° 10°
Time (min) Search range (pixels)
0

Fig. 3. Benchmarks and performance of DLE. A, B. L; loss |D — ﬁ\ (rolling
average) as a function of possible number of observable particle transitions (see text).
Dashed lines were calculated using half of the data with the lowest error, &, on DC
(as in Table 1). Scatter plots show L; estimates for individual movies. C. Three DLE
estimates of the DCs of 50-nm nanobeads in water (from three regions within the same
movie) are consistent with the expected DC, D = 8.8 um?/s (dashed line), estimated
with the Einstein—Stokes relation for 50-nm diameter spheres in water at 21°C. D. DCs
of QDs in brain ECS fall to zero following a heart stop, explained by the shrinking of
brain ECS. E. At high density of QDs on images (Fig. 1D), DCs (two curves estimated
from two parts of the same movie) returned by the classic estimators largely depend on
the “search range parameter (see text), making the estimates unreliable. DLE doesn’t
have tunable hyper-parameters, and it returns two consistent with each other values
of DCs from the two movie parts: D = 0.332 4 0.024 ym?/s and 0.343 & 0.020 pm?/s.
The red line shows the weighted average of two values, D = 0.338 £ 0.015 um?/s.

is typically decreased even more to collect more photons (many are lost due to
scattering), causing severe motion blur of fast-moving NPs.

As expected, DLE outperforms the classic estimators the most when the
motion blur or NPs density is high (Table 1). In contrast to classic estimators,
DLE has the potential to use the complex, severely blurred intensity distributions
of NPs on individual movie frames as additional information for estimating their
DCs.

Increasing performance of DLE with increasing NPs density on recorded im-
ages makes DLE the method of choice for studying transport in vivo under
pathological conditions. For example, high densities of NPs will occur near blood
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vessels with local disruption of the BBB or within shrinking brain ECS, following
swelling of brain cells (e.g. in terminal ischaemia).

By tracking QDs in the brain ECS, we showed that DLE is perfectly suited for
high-throughput preclinical studies of brain-targeted drugs. DLE also applies to
study transport in any scattering biological tissue imaged with 2PM, e.g., in the
heart, liver, kidney, and skin. DLE has the potential to become a standard tool
for estimating a very wide range of DCs from any images recorded with scanning
confocal or multi-photon microscopes, regardless of the degree of motion blur and
particle density.
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