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Abstract. Model generalisability, i.e. performance on multiple unseen
datasets, can be improved by training on large volumes of annotated
data, from which models can learn diverse representations. However, an-
notated medical data is limited due to the scarcity of expertise. In this
work, we present an efficient data sampling pipeline to select DIVerse and
bAlanced images (DataDIVA) from image pools to maximise model gen-
eralisability in retinal imaging. Specifically, we first extract image feature
embeddings using off-the-shelf foundation models and generate embed-
ding clusters. We then evenly sample images from those diverse clusters
and train a model. We run the trained model on the whole unlabelled
image pool and sample the remaining images from those classified as rare
categories. This pipeline aims to sample the retinal images with diverse
representations and mitigate the unbalanced distribution. We show that
DataDIVA consistently improved the model performance in both internal
and external evaluation, on six public datasets, with clinically meaning-
ful tasks of referable diabetic retinopathy and glaucoma detection. The
code is available at https://doi.org/10.5281/zenodo.12674694.

Keywords: Model generalisability · Foundation model · Diverse repre-
sentation · Unbalanced distribution · Data sampling.

1 Introduction

In recent years, there has been an explosion of interest in the application of
deep learning models to various medical tasks including disease diagnosis, lesion
localisation and segmentation, and biomarker discovery. Several studies have
demonstrated that medical models can achieve comparable or superior perfor-
mance to humans across multiple tasks [9,28]. However, the real-world utility of
these models is limited by poor generalisability outside of their original develop-
ment environment [10,16]. Generalisability on unseen sets can be improved by
training on large-scale annotated data, however often only a small proportion
of data can be selected for labelling due to limited annotation resources. It has
therefore been a long-standing challenge to select a limited subset of informative
data for labelling and model training which maximise model generalisability.

https://doi.org/10.5281/zenodo.12674694
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Fig. 1. Schematic of a. model training and evaluation on multiple sets and b.
DataDIVA. DataDIVA consists of diverse sampling and balance sampling to maximise
the model generalizability. After feature extraction via foundation models, diverse sam-
pling clusters the features and selects data points in quantile distances to cluster cen-
troids (yellow points). Balance sampling chooses the data points that are classified as
rare categories (red points). Concentric circles show the distance quantile to centroids.

Previous work samples the informative subset that approximates the distribu-
tion of the whole dataset and includes maximised information. The commonly
used strategies can be categorised into geometry based [23,27,4], uncertainty
based [11,25,2], decision boundary based [8,19], and their combination [29,26,1].
Geometry-based methods assume that data points close to each other in the
feature space tend to have similar properties, thus selecting subsets that mimic
full dataset distribution. Uncertainty-based methods assume that samples with
high uncertainty (e.g. high entropy) contain the information not yet learnt by
models, and therefore include them in model training. Decision boundary-based
methods find data points distributed around the decision boundary to improve
the model performance in vague cases. Combined strategies aim to achieve a
trade-off between properties in data selection [29,26,1]. These sampling meth-
ods have been widely used in data-efficient research, including active learning
[24,22] and continual learning [18,5]. Despite progress in this area, most of these
methods are usually designed with the target of maximising the performance on
a single set which has the same data distribution as the unlabelled data pool.
The performance on multiple unseen sets is more relevant for real-world appli-
cations but remains under investigation. Moreover, the data unbalanced issue,
commonly observed in medical AI which decays the model performance, has
not been thoroughly considered in the data sampling methods. Finally, several
powerful medical AI resources such as the foundation models [31,14] have been
proposed and validated to be capable of extracting good feature representation.
The efficacy of using the foundation model in facilitating the data sampling has
not been studied.
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In this work, we formalise the data selection problem in clinical scenarios,
aiming to select a data subset from large-scale unlabelled and unbalanced data
for labelling and model training, in a manner that maximises model performance
in internal and external evaluation, as shown in Figure 1a. We present an effi-
cient sampling pipeline to select data with diverse representation and relatively
balanced distribution in two steps, depicted in Figure 1b. The first step selects
diverse data in feature clusters and the second step samples the data predicted
as rare categories. The focus of this work is on the data sampling strategy, which
is compatible with other data diversity-based techniques, such as data augmen-
tation and generation.

We summarise our contributions. 1) We present DataDIVA, a pipeline for
sampling retinal images with diverse and balanced distribution, for real-world
clinical scenarios where labelling resources are limited and generalisation on un-
seen data is necessary for reliable and robust applications. 2) We incorporate the
open-source medical AI resource, i.e. foundation model, in the data sampling
pipeline and demonstrate its potential in guiding data sampling. 3) We show
that DataDIVA achieves improved performance compared to several competi-
tive baselines on multiple datasets, with different network backbones, in various
clinically meaningful tasks with retinal images.

2 Methods

2.1 Problem definition

We define an unlabelled and unbalanced set Du = {xi}Ni=1 with N data points,
an internal evaluation set Din drawn from the same distribution as Du, and a list
of external sets Dout drawn from separate distribution and unseen at training
time. We sample and label a subset with M data points, Ds = {xj , yj}Mj=1 from

Du using selection strategy S, i.e. Du
S→ Ds, where M ≪ N . A model f is

trained on Ds to maximise the performance in internal and external evaluations,

Ds = argmax(x,y)∈(Din∪Dout)argmax(x,y)∈Ds
T (f(x), y) (1)

where T (·) indicates target function. The selection strategy S can be either a
fixed selection criteria (e.g., entropy ranking [24]) or a network [27]. The Ds can
be sampled in multiple steps, each selecting a proportion of data to successively
update f , such as active learning. However, such iterative update significantly
increases computation complexity and the selection strategy S may not represent
well the unseen external sets Dout. In this paper, we present DataDIVA, an
efficient data selection pipeline which finds an optimised solution for Eq.1 by
sampling a Ds with diverse representation and balanced distribution.

2.2 Sampling data with diverse representation

Unlike natural images (e.g. ImageNet-1k) where there is significant image vari-
ation according to object category and localisation, medical images in a specific
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modality (e.g. retinal fundus photographs) show much less variation due to the
standardisation of imaging protocols. The variation across medical images high-
lights the difference in populations and imaging devices [21,3], which are highly
relevant to domain shift and model generalisability. Following the assumption
of geometry-based methods [23,27,4], i.e. data points close to each other in the
feature space tend to have similar properties, we sample the data Ddiverse with
diverse distribution in feature space to capture such variation.

To generate a good feature space, we use the powerful open-source foundation
model (e.g. RETFound [31] for retinal fundus photographs) to extract the fea-
tures Fu = {Fi}Ni=1 from Du. Features F are then grouped into K clusters via
clustering techniques like k-means [15], each cluster encompassing the feature
points with similar representation. Within each cluster, we calculate the dis-

tance
{∣∣∣F j

i − Ci

∣∣∣2}|Ci|

j=1

between the cluster centroid {Ci}Ki=1 and feature points

belonging to that cluster. A large distance
∣∣∣F j

i − Ci

∣∣∣2 corresponds to samples
different from the centroid, while small distances indicate similar samples. After
removing potential outliers, the range between maximum and minimum distance
describes the data diversity within each cluster.

A diverse sampling strategy is generally preferred to increase diverse repre-
sentation. The balance of Ddiverse matching Din and Dout can be achieved by
enhancing inter-cluster and intra-cluster diversity. DataDIVA includes two steps
for sampling in diverse representation. First, for each cluster, we will evenly
sample the data for inter-cluster diversity considering clusters represent sepa-
rate representations. Each cluster will contain M/K data points. Second, within
each cluster, we rank the distance list from small to large and split them into five
subgroups in quantile and then sample Ddiverse from the five subgroups evenly.
With such a strategy, DataDIVA is able to sample Ddiverse with highly diverse
feature representation.

2.3 Sampling data with balanced distribution

The unbalanced distribution commonly exists in medical AI and biases the model
performance. In large-scale clinical datasets, some categories significantly out-
number others, e.g. health category in EyePACS and AIROGS. This affects
model generalisability by causing biased predictions towards the majority class
and decreasing the performance in detecting disease cases. To mitigate the un-
balanced challenge, we aim to sample a subset Ds better representative of rare
categories.

It is infeasible to understand the real label distribution of unlabelled Du, so we
design DataDIVA as a two-step sampling pipeline. After we sample Ddiverse, we
first train a model finital and run it on all remaining Du. Due to the unbalanced
issue, the prediction easily tends to the major categories. A straightforward
solution is to select the data points that are classified as rare categories by finital
in the second step. Although there are certain false positive cases, i.e. major



Sampling Diverse and Balanced Retinal Images 5

categorical data that are wrongly classified as rare categories, this operation
may secure a higher proportion of rare categories in sampled data Dbalance. We
finally combine the Ddiverse and Dbalance as Ds for labelling and model training
to improve the model generalisability.

3 Experiments

3.1 Experiment setting

Data. We evaluate the efficacy of DataDIVA using clinically meaningful tasks,
including referable diabetic retinopathy (DR) detection and glaucoma detection.
In referable DR detection, we use three publicly available DR datasets, the
EyePACS [12], Kaggle APTOS-20191, and IDRiD [20] for model training and
evaluation. EyePACS includes 88,702 colour fundus photographs collected in
the US and by multiple imaging devices. 35,126 images are set for training and
53,576 for testing. We regard the training set as the unlabelled pool Du and keep
the test set for internal evaluation. The objective is to select a subset Ds from
Du for data labelling and model training, so as to maximise the model perfor-
mance in internal and external evaluation. The models are externally evaluated
on Kaggle APTOS-2019 and IDRiD which have clear differences from EyePACS
in both demographics and imaging devices. Following clinical definition, the first
two categories (no DR and mild DR) are grouped as non-referable DR and the
other three are grouped as referable DR. For glaucoma detection, we include
AIROGS [6], REFUGE [17], and ORIGA [30]. We split the available AIROGS
data (101,442 images) into 70%:30%, where 70% works as the unlabelled pool
Du and 30% for internal evaluation. The REFUGE and ORIGA, two bench-
marks commonly used for glaucoma detection, are used for external evaluation.
For data labelling and model training, we sample 600 images (about 1.7% of the
EyePACS train set) for referable DR detection and 1200 images (about 1.7% of
the AIROGS train set) for glaucoma detection. The sampled images are split
into 80%:20% as training and validation sets for model training.

Network architecture and implementation. We use ResNet-50 [13] and
ViT-large [7] as network backbones. We initially load the ImageNet weights for
ResNet-50 and use RETFound weights [31] for ViT-large. The sampled images
are used to fine-tune the models. We use RETFound to extract features from
colour fundus photographs for DataDIVA. We compare the proposed DataDIVA
with random sampling, as well as highly relevant and competitive baselines,
including CoreSet sampling [23] and ALFA-Mix [19]). The images sampled by
CoreSet and ALFA-Mix are obtained via publicly available code repository2,
using two-step image sampling similar to DataDIVA. The data quantity, model
architecture, and hyper-parameters were standardised in all cases to achieve a
fair comparison, as detailed in shared codes. Within each cluster, we calculate
the distance between data points and the cluster centroid. To remove data points
1 https://www.kaggle.com/competitions/aptos2019-blindness-detection/data
2 https://github.com/AminParvaneh/alpha_mix_active_learning



6 Zhou et al.

Table 1. Ablation study for DataDIVA. The left side includes results on diabetic
retinopathy detection while the right side shows results on glaucoma detection. Ddiverse

samples all images with diverse sampling. Dbalance randomly selects half images for
initial model training and selects the second half in balance. The proposed DataDIVA
combines Ddiverse and Dbalance strategies. The sample quantity equals for each method.

Internal-EyePACS-ViT Internal-AIROGS-ViT
Method F1-score AUROC AUPR F1-score AUROC AUPR
Ddiverse 0.49±0.01 0.76±0.02 0.73±0.02 0.22±0.04 0.82±0.01 0.60±0.02
Dbalance 0.33±0.15 0.75±0.02 0.70±0.03 0.44±0.04 0.88±0.01 0.70±0.03
DataDIVA 0.50±0.02 0.77±0.01 0.74±0.01 0.46±0.04 0.90±0.02 0.72±0.02
External-APTOS2019-ViT External-REFUGE-ViT
Ddiverse 0.75±0.09 0.88±0.04 0.88±0.03 0.46±0.14 0.81±0.17 0.79±0.09
Dbalance 0.56±0.11 0.73±0.05 0.74±0.04 0.60±0.07 0.89±0.01 0.87±0.02
DataDIVA 0.83±0.04 0.92±0.02 0.92±0.02 0.64±0.12 0.93±0.01 0.91±0.01
External-IDRiD-ViT External-ORIGA-ViT
Ddiverse 0.84±0.03 0.90±0.02 0.88±0.02 0.30±0.17 0.76±0.09 0.70±0.07
Dbalance 0.57±0.26 0.86±0.02 0.84±0.03 0.28±0.12 0.77±0.02 0.70±0.03
DataDIVA 0.86±0.02 0.92±0.01 0.90±0.02 0.29±0.15 0.75±0.04 0.71±0.03

that are extremely far away from the centroid (defined as outliers in this paper),
we set a threshold of 95% and removed the data points that were distributed
farther than 95% of the distance distribution. We use Tesla T4 GPUs (16GB)
for model training and evaluation in all experiments. The model uses the colour
fundus photographs as input and outputs the probability for each category. All
training images were preprocessed with AutoMorph [32] and resized to (256, 256).
We run model training and evaluation with four random seeds to calculate the
mean performance and standard deviation. Evaluation metrics. Model perfor-
mance is reported using Area Under the Receiver Operating Curve (AUROC),
Area Under the Precision-Recall curve (AUPR), and F1-score.

3.2 Experiment results

Ablation study on diversity and balance. We investigated the efficacy of
diverse sampling and balance sampling of DataDIVA in Table 1. Ddiverse indi-
cate all the samples were obtained in diverse sampling. Dbalance first randomly
selected half images for initial model training and selected the second half with
balanced sampling. DataDIVA (Ddiverse +Dbalance) outperformed the ablation
methods on both referable DR detection and glaucoma detection, which demon-
strated the efficacy of the two components.

Performance comparison in glaucoma detection. Table 2 compares the
performance of DataDIVA and competitive baselines in referable glaucoma de-
tection. The three sampling methods (i.e. CorSet, ALFA-Mix, and DataDIVA)
in general all outperformed random sampling which demonstrated the efficacy
of specifically designed methods. DataDIVA performed slightly better than the
baseline ALFA-Mix in the internal set while clearly outperforming all base-
lines in external evaluations. This highlights the enhanced model generalisability
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Table 2. Model performance on glaucoma detection with model ResNet-50 and ViT-
large, including internal and external evaluation.

Internal-AIROGS-ResNet50 Internal-AIROGS-ViT
Method F1-score AUROC AUPR F1-score AUROC AUPR
Random 0.22±0.05 0.82±0.03 0.62±0.02 0.29±0.04 0.85±0.03 0.63±0.03
CorSet 0.31±0.07 0.86±0.02 0.66±0.03 0.32±0.03 0.87±0.01 0.67±0.02
ALFA-Mix 0.39±0.05 0.88±0.01 0.71±0.01 0.44±0.03 0.90±0.02 0.71±0.01
DataDIVA 0.42±0.04 0.90±0.01 0.71±0.02 0.46±0.04 0.90±0.02 0.72±0.02
External-REFUGE-ResNet50 External-REFUGE-ViT
Random 0.08±0.04 0.76±0.06 0.76±0.04 0.47±0.06 0.54±0.40 0.66±0.26
CorSet 0.38±0.09 0.83±0.03 0.80±0.02 0.60±0.22 0.87±0.01 0.86±0.01
ALFA-Mix 0.41±0.25 0.88±0.03 0.84±0.01 0.44±0.20 0.91±0.04 0.88±0.02
DataDIVA 0.54±0.25 0.91±0.02 0.87±0.02 0.64±0.12 0.93±0.01 0.91±0.01
External-ORIGA-ResNet50 External-ORIGA-ViT
Random 0.15±0.10 0.68±0.02 0.65±0.02 0.21±0.18 0.64±0.03 0.62±0.03
CorSet 0.20±0.03 0.68±0.03 0.66±0.02 0.26±0.17 0.73±0.02 0.68±0.02
ALFA-Mix 0.20±0.03 0.70±0.03 0.66±0.02 0.21±0.07 0.70±0.02 0.65±0.01
DataDIVA 0.19±0.04 0.73±0.02 0.69±0.02 0.29±0.15 0.75±0.04 0.71±0.03

Table 3. Model performance on referable diabetic retinopathy detection with model
ResNet-50 and ViT-large, including internal and external evaluation.

Internal-EyePACS-ResNet50 Internal-EyePACS-ViT
Method F1-score AUROC AUPR F1-score AUROC AUPR
Random 0.43±0.01 0.74±0.01 0.70±0.01 0.32±0.21 0.71±0.05 0.65±0.06
CorSet 0.40±0.03 0.76±0.01 0.71±0.01 0.51±0.02 0.77±0.01 0.72±0.01
ALFA-Mix 0.43±0.03 0.75±0.02 0.72±0.02 0.52±0.03 0.75±0.01 0.74±0.01
DataDIVA 0.45±0.01 0.75±0.01 0.71±0.01 0.50±0.02 0.77±0.01 0.74±0.01
External-APTOS2019-ResNet50 External-APTOS2019-ViT
Random 0.68±0.01 0.80±0.01 0.74±0.01 0.79±0.02 0.85±0.13 0.84±0.12
CorSet 0.70±0.03 0.85±0.01 0.84±0.01 0.78±0.09 0.90±0.03 0.91±0.03
ALFA-Mix 0.71±0.02 0.86±0.01 0.84±0.01 0.78±0.05 0.91±0.02 0.90±0.02
DataDIVA 0.71±0.03 0.88±0.02 0.88±0.02 0.83±0.04 0.92±0.02 0.92±0.02
External-IDRiD-ResNet50 External-IDRiD-ViT
Random 0.78±0.03 0.81±0.02 0.80±0.02 0.83±0.01 0.84±0.05 0.83±0.04
CorSet 0.80±0.03 0.87±0.02 0.84±0.02 0.78±0.08 0.88±0.01 0.87±0.02
ALFA-Mix 0.81±0.01 0.87±0.01 0.84±0.03 0.84±0.03 0.91±0.01 0.88±0.01
DataDIVA 0.83±0.03 0.90±0.01 0.87±0.02 0.86±0.02 0.92±0.01 0.90±0.02

brought by DataDIVA. We visualised the t-SNE maps based on REFUGE fea-
tures extracted by fine-tuned models in Figure 2a, and observed that the model
trained on DataDIVA samples indeed separated different categories better. We
also studied the sample categorical balance for each method, where DataDIVA
offered a more balanced distribution, as shown in Supplementary Table 1.

Performance comparison in referable DR detection. Table 3 com-
pares the performance of DataDIVA and competitive baselines in referable DR
detection. We observed that DataDIVA performed comparably to the baselines
in the internal test while achieving the best performance in external evaluations.
We also observed well-separated features extracted by the model fine-tuned on
DataDIVA samples in Figure 2b. The sample balance distribution is introduced
in Supplementary Table 2.

Effects of sampling hyperparameter. We studied the effects of cluster
number K (default as 10) on referable DR detection in Supplementary Figure 1.
The results showed that model performance is relatively stable while large cluster
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Fig. 2. t-SNE maps of a. REFUGE and b. APTOS 2019 test features extracted by
models trained on ALFA-Mix (left) and DataDIVA (right) samples. The different colour
indicates the different categories. DataDIVA separates categories relatively better.

numbers (K = 10, 15) provided slightly better performance. In Supplementary
Figure 2, we showed a better performance using a specialised foundation model in
extracting retinal features, compared to with a model trained on ImageNet-21k.

4 Conclusion

We present DataDIVA, an efficient data sampling pipeline for retinal images,
aiming to select a diverse and balanced subset for model generalisability. Exper-
imental results show that DataDIVA significantly improves model performance
compared to competitive methods in clinically meaningful tasks. We validated
the strength of the foundation model in facilitating feature extraction and data
sampling. We also discovered that all specifically designed sampling strategies
(CoreSet, ALFA-Mix, and DataDIVA) alleviated the unbalanced issue, partially
explaining the solution principles. This research can provide insights into several
healthcare AI applications, such as large-scale clinical database curation and
data selection for annotation.

DataDIVA works on increasing data diversity and balance in logistic and
simple ways. A huge room exists to further improve DataDIVA in its two com-
ponents by combining various sampling strategies (e.g. incorporating ALFA-Mix
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into balance sampling). Future work will compare DataDIVA with the model
trained on the full labelled data, and investigate the combination of DataDIVA
with other generalisation techniques, including image augmentation and gener-
ation, which are well-recognised strategies to increase data diversity thus im-
proving model generalisation. Additionally, it is worth exploring whether such
a sampling pipeline has synergy with other generalisable training frameworks,
such as federated learning and active learning. Finally, the proposed selection
strategy will be evaluated in other clinical tasks, as well as extra medical fields,
including radiology and dermatology. Large-scale clinical datasets with diverse
health conditions will be used to evaluate the efficacy of DataDIVA in real-world
healthcare scenarios.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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