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Abstract. Research has shown a strong link between brain function and
cortical folding using various imaging techniques and genetics. Under-
standing the functional roles of gyri and sulci in cortical folding patterns is
crucial for insights into biological and artificial neural networks. However,
the complex relationship, individual variations, and intricate brain func-
tion distribution pose challenges in developing a comprehensive theory
and computational model. To address this, a new model leveraging brain
functional gradients from fMRI data was developed to predict individual
cortical folding maps. The model incorporates attention mesh convolu-
tion to account for spatial organization, showing superior performance
compared to existing models. Discoveries indicate that less dominant func-
tional gradients play a significant role in folding prediction, with cortical
landmarks found on borders of activated regions. The results highlight
the potential of tailored neural networks in enhancing the understanding
of brain anatomy-function relationships.
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1 Introduction

Relation between brain function and cortical folding has long been intriguing due
to its importance in offering profound insight into brain functional operation mech-
anisms, brain development and evolution, as well as being of clinical applications
[1]. Gyri and sulci, the convex and concave cortical folding patterns, are two basic
anatomical units of cortical morphology. It has been found that gyri/sulci align
well with cortical functional boundaries [2], at least in primary functional cortex.
Specific gyro-sulcal patterns, such as the plis de passage gyri [3], topology of local
gyri and sulci (such as H-shape sulci in frontal lobe [1], H-shape gyri in fusiform
gyri [4] and the ventromedial prefrontal cortex (vmPFC) in DMN region [5]),
were suggested to correspond to subtypes of a specific function (such as cognitive
and perception ability associated with frontal lobe and reading ability associated
with fusiform gyri) or relate to the placement of a specific functional region
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(such as functional activation location in vmPFC). In [6], functional MRI signals
were suggested to have stronger low frequency components on gyri, whereas sulci
have signals of stronger high frequency components. Neuronal difference in their
distributions [7], types [8], wiring patterns [9] and even morphology [7] were
reported to be present between gyri and sulci, which was further suggested to
lead to differentiated cell-level functioning patterns. In addition, expression of a
huge number of genes was reported to be different between gyri and sulci [10].
Among them, interestingly, the same group of genes can lead to the formation of
gyri/sulci on gyrencephalic species while mediating brain function distribution
patterns on lissencephaly species [10], suggesting a possible deeply rooted bond
between cortical folding pattern and brain functions. Importantly, the functional
differentiation between gyri and sulci could also provide clues to artificial neural
network design. For example, gyri were suggested to serve as functional hubs and
sulci as local processors, whereas sulci were isolated by gyri on the cortical sheet
[11]. Recalling that graph architecture of an artificial neural network in the sweet
spot resembles the real neural networks [12], such a gyro-sulcal (hub-nonhub)
spatial distribution might suggest an alternative approach for neural network
design.

In spite of the importance in anatomy-function relation, no explicit explanation
or generic theory of such a relation can be satisfactorily applied across brain
regions and species [2][13]. Also, very few computational models are found [6] to
provide a precise prediction from brain function to cortical folding. The reasons
could be attributed to many folds: 1) the mapping between brain function and
folding pattern is far from linear; 2) inter-individual variabilities are huge in
the layout of both gyro-sulcal patterns and functional regions [2][13]; 3) brain
function was usually delineated by atlases where “abrupt” boundaries were used to
segregate functional “units” or “networks”, the functional attributes within which
were considered to be of the same. However, the transition of a brain function
from one to another was suggested to be “smooth” and “gradual”, which also
gains supports from the related genetic expression [14]; 4) the spatial patterning
of brain function distribution was not fully used to predict cortical folding.

To answer the aforementioned questions, as a preliminary effort, we pro-
posed to use artificial neuronal networks to investigate the predictive ability of
brain functional gradients on cortical folding patterns at the macro scale. By
means of resting-state fMRI (rsfMRI) and structural MRI (sMRI) in the Human
Connectome Project (HCP) dataset [15], we estimated the global functional
gradients, embedding axes that encode the "gradual" differences in mesh vertices’
connectivity patterns and can be present on a cortical sheet (top-left in Figure
1a), where the prediction of gyro-sulcal segmentation (top-right in Figure 1a) was
performed. Technically, we proposed to use a mesh convolution model [16] based
on the classic U-net architecture, which has been widely and successfully applied
to medical image segmentation. In addition, to enhance the interpretability of the
mapping from functional gradients to cortical folding maps, we added a channel
attention block [17] to the head of the U-net mesh convolution model, where
functional gradients, as multi-channels, were re-weighted by the attention block
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before being fed to mesh convolution. The weights can encode the contribution
of functional gradients to cortical folding prediction.

2 Related Works

2.1 Mesh Convolution

Meshes are composed of three distinct types of geometric primitives: vertices,
edges, and faces. The classification on meshes is a basic research area which has
made great progress with the development of deep learning. DiffusionNet [18]
introduces a general-purpose approach to deep learning on 3D surfaces. The
networks can be discretized on various geometric representations such as triangle
meshes or point clouds, and can even be trained on one representation and then
applied to another. HodgeNet [19] uses many features that make it an attractive
alternative for learning from meshes. During inference, its structure resembles
that of most spectral geometry processing algorithms: construct a useful operator,
and compute features from its spectrum. However, the above two approaches, as
well as many other methods, including Pointnet [20], MeshCNN [21], PD-MeshNet
[22], MeshWalker [23], PFCNN [24], need geometric features of meshes, such as
coordinates of vertices, which is not applicable to our task that learns and predicts
"texture" features on meshes. BrainSurfCNN [25] and SubdivNet [16] provides
a solution to the problem. BrainSurfCNN is a method which uses spherical
convolutional kernel [26] to predict the task fMRI contrasts from resting-state
functional connectivity ones under a regression framework. The work in [26]
uses only one-ring neighborhood for convolution, which limits the extraction of
long-range features. SubdivNet [16] uses a regular and uniform downsampling
scheme to establish a fine-to-coarse mesh hierarchy. The convolutions efficiently
support stride and large dilation, allowing the model to better capture long-range
features.

2.2 Predicting Gyro-sulcus From fMRI

So far, there are very few works in predicting cortical folding pattern from fMRI
via a deep learning model. Liu and colleagues [6] designed a convolutional neural
network (CNN) based classifier, which can differentiate gyral and sulcal fMRI
signals with a reasonable accuracy (0.67 on resting state fMRI). However, in
this model, vertices on surfaces are samples (with a gyrus/sulcus label) inde-
pendent from each other, whereas functional regions are not spatially isolated
and independent. Either functional network studies or functional gradient ones
demonstrated that remote or neighboring regions cooperate with each other to
elicit and maintain a brain function [14][27]. Therefore, functional connectivity
induced gradients that encode the spatial embedding of brain neuronal interac-
tivity could be more suitable for prediction of spatial layout of gyri/sulci. Also,
the relatively lower classification accuracy in [6] could be ascribed to the direct
use of noisy fMRI signals as predictive features, whereas connectivities could
mitigate such side effects and direct the attention to brain functions at a global
scale rather than a vertex-wise one.
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Fig. 1. a.Attention mesh convolution network architecture. b.Comparison experiments
between ground truth and predicated results via different methods. A ’U’ shaped gyral
area is enlarged for inspection in detail, where yellow circles highlight the unsatisfied
predictions. Abbreviations: G for gradients.

3 Method

In general, we designed a novel attention mesh convolution method based on U-net
architecture to predict the gyro-sulcal segmentation map from brain functional
gradient maps. The model’s inputs are multi-channel functional gradients on
icosahedral mesh [28], while its output is a two-channel binary map on the same
icosahedral mesh (Figure 1a). More details about functional gradients and cortical
folding patterns please referred to the supplementary.

3.1 Channel Attention Block

In order to boost the representation power of a network, the channel attention
block SEnet [17] was applied in front of mesh convolution. In this attention block,
a self-gating mechanism based on channel dependence yields the excitation of
each channel (functional gradient in this work), such that channels of input were
then re-weighted and fed to the following layers. This weight vector w could
encodes the respective contribution of functional gradients to folding pattern
prediction.

As shown in Figure 1a and Equation(1&2), the F(·) is global average pooling
function which compresses the characteristics of each channel into a real number,
where c denotes the channel number, Nf denotes the number of mesh faces,
Gc denotes the channel’s gradient contrasts. Then, a 1 ∗ c vector was sent to
Fex(·,w) which was implemented by a fully connected layer. In our method, we
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encoded 5 channels to 2 channels and then decoded them back to 5, in which w
is a learnable parameter. After these operations, w gained the weight for every
input channel, and then Fscale (·, ·) scaled the 1 ∗ c vector and make the gradient
contrasts on every mesh face multiplied by the corresponding channel weight.
Finally, the re-weighted channels were fed to the mesh U-Net.

z = F (Gc) =
1

Nf

Nf∑
i=1

Gc(i) (1)

s = Fex(z,W) = σ(g(z,W)) = σ (W2δ (W1z)) (2)

3.2 Mesh CNN with U-net Architecture and Loss Function

As shown in Figure 1a, after the attention block, a ’meshlinear’ operation was
used to generate 64 channels. This operation is a linear operation on meshes
which resembles ’1D’ convolution on images. Then, the results above were sent to
the classic U-Net framework. The kernel size was set to 3 on all mesh convolution
operations, which was designed in [16], and the ’mean pooling’ was used for
downsampling. A difference between the classic U-Net framework and ours is that
a ’meshlinear’ operation was used after the third ’pooling’ operation (yellow arrow
in Figure 1a), and we found this change improves the accuracy of prediction.
Finally, the deep network yielded two output channels. The loss was calculated
by cross-entropy cost function, and the final result was obtained by an ’argmax’
function, in which each mesh face was classified as sulcus or gyrus (Equation(3)).

L = −[y log ŷ + (1− y) log(1− ŷ)] (3)

The segmentation accuracy was defined in Equation(4), in which the Nf

denotes the number of mesh faces, prdi and labi denotes the ith face’s prediction
and label, respectively. sign function outputs 0 and 1, according to whether prdi

is equal to labi or not.

Acc =
1

Nf

Nf∑
i=1

sign(prdi, labi) (4)

4 Experiments

4.1 Dataset, Preprocessing & Implementation

We used the 3-Tesla T1-weighted MRI and resting-state fMRI (rsfMRI) data from
Human Connectome Project (HCP) dataset [15]. These data have been minimally
pre-processed upon release [29]. More details of dataset and preprocessing can be
found in supplementary. To adapt to the requirement in Subdivnet, we re-meshed
the original surface and transferred the gradient features as well as class labels (0
for gyri and 1 for sulci) from mesh vertices to the mesh faces. Our experiments
included 348 samples for training/testing (0.8/0.2), the batch size and learning
rate was set to 6 and 0.01, respectively.
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4.2 Results & Methods Comparison

Since our model was modified from Subdivnet [16], it was used as a mesh
convolution baseline. The BrainSurfCNN [26] predicts the task fMRI contrasts
from resting-state functional connectivity ones by using a regression scheme. For
a fair comparison, we modified its’ network architecture by replacing the 100
input channels with 5 channels, the 47 output channels with 2 channels in our
model, as well as the loss function with cross-entropy loss, to implement the same
segmentation task. The features on the mesh vertices were transferred to faces as
well. Support-vector machine (SVM) was also selected for comparison. Figure
1b shows the segmentation results from one random testing subject and Table 1
reports the comparison of results via different methods by means of a variety
of metrics. It is found that nonlinear models overwhelmingly outperform linear
SVM in all metrics. Besides the intrinsic nonlinear relation between function
and folding that could be significantly better encoded and decoded by nonlinear
models, the definition of neighboring mask, a key factor for convolution operations
on a mesh, could play an important role in the improvement. The importance of
the convolution mask was also supported by a better performance of Subdivnet
than BrainSurfCNN, since BrainSurfCNN, unlike Subdivnet, only used a small
neighborhood as convolution mask which limits the extraction of long-range
features. It is also found that sulci were often oversegmented by Subdivnet and
BrainSurfCNN (yellow circles in Figure 1b) in highly bent gyral regions, where
the cortical morphology is far more complex than others.

Table 1. Comparison with other methods. The MIoU, Precision, F1-score, Recall and
Accuracy are reported.

Method MIoU Precision F1-score Recall Accuracy

Our Method 0.603 0.752 0.751 0.750 75.85%
Subdivnet 0.595 0.744 0.745 0.746 75.11%
BrainSurfCNN 0.464 0.657 0.622 0.626 65.03%
Linear SVM 0.295 0.488 0.371 0.499 59.09%

4.3 Ablation Study

We considered the effects of different types of attention models and the number
of functional gradient channels. It is found in Figure 1b and Table 2 that adding
channel attention block or switching to another one does not significantly improve
the performance in MIoU, Precision, F1 and Recall, whereas the accuracy could
be affected by the selection of a channel attention block. The choice or absence
of a channel attention could yield wrong segmentation in "straight" gyral/sulcal
regions (the left yellow circles in third row of Figure 1b). Neither fewer (4G)
nor more (6G) functional gradients improve the segmentation performance. Mis-
classification with 4G and 6G was usually found on the border between gyri and
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Table 2. Ablation study on attention block and gradients. The MIoU, Precision,
F1-score, Recall and Accuracy are reported. Red and blue denote the best and the
second-best results, respectively. Abbreviations: G for gradients.

Type MIoU Precision F1-score Recall Accuracy

SEnet+5Gs 0.603 0.752 0.751 0.750 75.85%
ECAnet+5Gs 0.599 0.750 0.747 0.745 75.61%
No Attention+5Gs 0.598 0.748 0.747 0.746 75.45%
SEnet+4Gs 0.587 0.744 0.737 0.734 74.89%
SEnet+6Gs 0.580 0.732 0.732 0.732 73.86%
Dict 0.448 0.627 0.611 0.614 63.60%

sulci (yellow circles in the fourth row of Figure 1b). In addition, we replaced the
input data with another dataset which was generated by sparse representation,
group-wise spatial dictionary mentioned in [30]. FMRI of every subject was
decomposed into 100 networks, then 100 features of every points on the mesh
was fed to train. As shown in Table 2, the experimental results show that the
above functional network representation can not predict cortical gyro-sulcal
segmentation well(’Dict’ represents the group-wise spatial dictionary dataset).

5 Discussion

The attention block re-weights the five gradients. The latter gradients (3G
and 5G) gain relatively higher weights (Figure 2(b)), and their similarity to
curvature map (measured by Pearson correlation) is significantly lower than the
dominant gradients (1G and 2G). These results suggest that the implicit relation
between function and folding might not be encoded in dominant gradients. It is
also interesting to find that some functional networks, which are not explicitly
represented by input gradients, can be identified in activation maps in deep layers.
As an example, the fronto-parietal network, one of the resting-state networks
not present in the 5 gradients, were found in both encoding and decoding layers,
as shown in Figure 2(a). Finally, the activation maps in the last two-channel
layer, were related to folding landmarks, gyral peaks (local convexity maxima)
and sulcal pits (local concavity maxima), which were obtained independent of
curvature used to yield the output gyro-sulcal maps. These landmarks (blue
bubbles in Figure 2(c), group-wise mean locations across subjects) are not located
on the highly activated regions (red regions). On average, activation values on
these landmarks are 0.46±0.62 and 0.60±0.55 (p<0.05, via unpaired t-test) on
other regions (expect the gray background), suggesting that these landmarks
might mark the borders of folding patterns that are highly correlated with brain
functions.
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Fig. 2. (a) Activation maps in different deep layers that resemble the fronto-parietal
functional network, not detected by functional gradients. (b) Similarity between func-
tional gradients (G for short) and curvature map, and the weights of Gs learnt from
attention block. (c) The segmentation activation maps (red for more activated regions)
in the last two-channel layer and cortical landmarks (cyan bubbles), including gyral
peaks and sulcal pits, that are independent from curvature.

6 Conclusion

In this work, we developed an attention mesh convolution model based on the
U-net architecture to predict cortical gyro-sulcal segmentation maps from brain
functional gradients derived from resting-state fMRI. The model architecture,
such as input channel, output channel, feature types and attention block, can be
easily extended or customized according to specific needs. Unlike the previous
study, where functional signals from gyral/sulcal vertices were independently
used as samples to a CNN model and their frequency band was found to be
a discriminative feature [6], the mesh convolution in our model considers the
spatial organization of functional gradients and folding patterns on a cortical
sheet. The prediction performance via our model outperforms the state-of-the-art.
In addition, we found that the dominant functional gradients contribute less to
folding prediction. On the activation maps of the last layer, we found that some
well-studied cortical landmarks are on the borders of, rather than within, the
highly activated regions. These results and findings suggest that a specifically
designed artificial neural network can improve the precision of the mapping
between brain functions and cortical folding patterns, and can provide valuable
clues of brain anatomy-function relation for neuroscience and artificial neural
network design.
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