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Abstract. Three-dimensional reconstruction of the surgical area based
on intraoperative laparoscopic videos can restore 2D information to 3D
space, providing a solid technical foundation for many applications in
computer-assisted surgery. SLAM methods often suffer from imperfect
pose estimation and tissue motion, leading to the loss of original texture
information. On the other hand, methods like Neural Radiance Fields
and 3D Gaussian Split require offline processing and lack generalization
capabilities. To overcome these limitations, we explore a texture opti-
mization method that generates high resolution and continuous texture.
It designs a mechanism for transforming 3D point clouds into 2D tex-
ture space and utilizes a generative network architecture to design 2D
registration and image fusion modules. Experimental results and com-
parisons with state-of-the-art techniques demonstrate the effectiveness
of this method in preserving the high-fidelity texture.

Keywords: 3D Texture optimization · Misaligned information fusion ·
Generative framework · High-fidelity texture· Registration.

1 Introduction

The 3D reconstruction of the surgical area finds wide applications in medical
domains such as surgical navigation [7, 19], Augmented Reality (AR) systems
[16, 4], and remote surgical guidance [2]. Simultaneous Localization and Map-
ping (SLAM) methods combine deep learning to achieve incremental dense re-
construction, demonstrating potential for real-time application in laparoscopic
surgery [12, 20, 9, 7, 13]. However, influenced by imperfect pose estimation re-
sults and subtle tissue movements, simple point cloud overlay inevitably leads
to the loss of original texture information in the reconstructed internal 3D struc-
ture. Since the input intraoperative laparoscopic video can be seen as continuous
dense observations of the surgical area, each frame carries more valid information.
Therefore, the current limitation of SLAM algorithms in faithfully reproducing
the consistent texture is an unreasonable phenomenon.
⋆ Corresponding author.
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Recently, Neural Radiance Field (NeRF) [15, 14] and 3D Gaussian Splitting
(3DGS) [5, 8] have demonstrated their potential in generating high-quality im-
ages and reconstructing geometric structures. They are trained on extensive
photo collections of the entire scene utilizing viewpoint constraints. However,
the limitation of both NeRF and 3DGS is that they are offline processes and
lack generalization. They require the pre-calibration of pose information for each
image or the initialization of sparse point clouds using tools like COLMAP[11].
In real surgical environments, this pre-calibration step is impractical because the
scene is dynamic and constantly changing. Moreover, all the steps need to be
repeated for a new surgical scene.

The migration of SLAM technology to endoscopes or laparoscopes has be-
come a popular topic. Previous methods have explored the accuracy of depth
estimation and pose estimation from various perspectives, but typically there
are only three approaches commonly used for point cloud fusion. MIS-SLAM,
EndoMotion, and SAGE-SLAM[12, 9, 7] adopt volume and surfel-based fusion
methods to weight and sum the textures of point clouds. EMDQ-SLAM[20] uses
the multi-band blending (MBB) to generate a smooth transition effect. BDIS-
SLAM[13] simplifies dense frame-wise point cloud fusion by replacing overlapping
regions with the latest frame. All methods suffer from a decrease in the resolu-
tion of 3D textures when handling inaccurate poses and outlier noise, resulting
in a visually blurry effect or loss of original texture details. A similar field is 2D
SLAM[21, 6] based on laparoscopic images, but they only perform image mo-
saicking in the 2D image coordinate system, lacking the mapping relationship
with 3D space. As a result, they cannot utilize the reverse optimization of point
cloud texture using the stitched 2D texture.

In this paper, we propose a novel texture optimization method, which could
merge RGB point clouds from two frames into a unified point cloud with high-
definition and continuous textures. By inputting RGB images for each frame,
existing algorithms can be used to obtain depth and pose with estimation er-
rors. The key challenge lies in effectively overlaying information using 3D mis-
alignment data. We transform the 3D point clouds of two frames into a unified
coordinate system, then use camera projection and regression algorithms to ob-
tain 2D imaging. Finally, we construct a generative model with registration and
fusion module to fuse misaligned information from the two frames, so as to di-
rectly generate the seamless and high-fidelity texture for point cloud.

2 Methodology

2.1 2D Mapping

Due to the disorder and discreteness of 3D point cloud data, directly optimizing
the texture of 3D point clouds often involves complex methods and extensive
computations. In the SLAM framework, assuming we have RGB images, depth
maps, and camera poses between consecutive frames, the point cloud information
for each frame is derived from the 2D domain. Therefore, we aim to drive 3D
texture optimization through the fusion of multi-frame 2D information. Initially,
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Fig. 1. The designed architecture based on KL-Reg VQ-GAN.

using estimated camera poses, we transform the point cloud Pi of frame i to
frame j as Pi,j , then obtain discrete pixels ppixel in the 2D pixel coordinate
system using the camera model. These fractional values cannot directly form
an image. So, based on ppixel, Delaunay triangulation is performed. Then, for
each integer pixel position within different triangles, interpolation calculates the
corresponding texture information, thus obtaining the observed image Ii,j of
point cloud Pi,j . This functionality can be directly implemented in SciPy using
the griddata function. Finally, Ii,j and the captured RGB image Ij are used as
input to the texture optimization network.

2.2 Registration Module

The VQ-GAN[3] employs a two-stage approach to image generation, which in-
volves compression and regeneration. The encoder can compress images into
compact latent spaces while providing multi-scale features with more effective
information for better registration. The decoder can generate high-resolution
images from limited information, providing a coarse-to-fine pattern for texture
fusion and refine. Therefore, we construct the texture optimization network by
combining the designed Registration Module and Fusion Module based on the
pretrained KL-Reg VQ-GAN[10], as shown in Fig.1.

Assuming the input image is I ∈ RH×W×3, the KL-Reg VQ-GAN encoder
compresses it into a latent code E 1

16 , while providing multi-scale deep features
(E1, E 1

2 , E 1
4 , E 1

8 ). Here, the numbers denote the downsampling ratios. Since the
rotation and translation between the two texture frames are unknown, a coarse-
to-fine technique is employed to accurately predict the texture correspondence.

Coarse-scale Transformer Given source frame Is and target frame It, we
build a transformer architecture shown in Fig.2(a), to compute global correlation
at E

1
8
s , E

1
8
t ∈ RH

8 ×W
8 ×Ce , where Ce denotes the number of channels. To account

for the texture similarity of laparoscopic images and the permutation invariance
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of attention mechanisms, calculating 2D position encodings assist the network in
recognizing the position and order of each feature, thereby eliminating potential
matching ambiguities. Then the input 3D feature maps E

1
8
s , E

1
8
t are element-

wise added with 2D positional encoding and flattened into 2D feature maps
eI ∈ RHW

64 ×Ce before being fed into the transformer.
The transformer architecture is composed of multiple stacked self-attention

and cross-attention modules. For each attention head h, fully connected layers
are used to compute the query matrix Qh, key matrix Kh, and value matrix Vh

from the input features. In the self-attention module, Qh,Kh,Vh are all derived
from the same input, while in the cross-attention module, Qh is derived from
the source image (target image), and Kh,Vh are derived from the target image
(source image), which are shown in Fig.2(a). The attention map Ah ∈ RHW

64 ×HW
64

in each head is computed via the scaled matrix multiplication and softmax func-
tion. The output feature map Vh is then computed by:

VO = WOConcat(A1V1,A2V2, · · · ,AHVH) + bO, (1)

where H means the number of attention heads, WO ∈ RCe×Ce and bO ∈ RCe are
learnable parameters of a fully connected layer. Then eI is added directly to VO
through residual connection, and the final features eO ∈ RHW

64 ×Ce for the next
layer are obtained by applying Layer Normalization and fully connected layer.
The specific network structure is depicted in Fig.2(b).

Another pathway in cross-attention module involves deriving the optical flow
between two images from the multi-head attention. The global attention map
A ∈ RHW

64 ×HW
64 is defined as:

A = softmax
(
Q1KT

1√
Ch

+
Q2KT

2√
Ch

+ · · ·+ QHKT
H√

Ch

)
. (2)

The optical flow F 1
8 ∈ RH

8 ×W
8 ×2 is then computed by the weighted sum of the

attention map A and the corresponding position:

F
1
8
i,j =

HW
64∑

k=1

Ai×W
8 +j,kXi×W

8 +j,k,

HW
64∑

k=1

Ai×W
8 +j,kYi×W

8 +j,k

 , (3)

where X ,Y ∈ RHW
64 ×HW

64 is the x and y coordinate of the 2D position matrix.

Fine-scale Refinement Since each pixel’s optical flow at a coarse scale corre-
sponds to four pixels at a finer scale, replicating the value along both the x-axis
and y-axis is a reasonable approach for achieving upsampling. Then we map each
pixel x of E

1
4
s to the predicted position x′ in E

1
4
t . Due to errors in the coarse-scale

optical flow results, we define a local grid around x′ for adjustment:

G(x′) =
{
x′ + d|d ∈ Z2, ∥d∥1 ≤ r

}
, (4)
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Fig. 2. The detailed network structures in the Registration Module and Fusion Module,
comprising (a) the transformer architecture with a multi-head attention mechanism,
(b) the layers of the Self-attention Module and Cross-attention Module, and (c) the
specific network architecture of ResBlock.

which consists of integer offsets with a radius not exceeding r. Afterwards, based
on G(x′), we employ bilinear sampling to acquire the neighboring features of x′,
which are then utilized to calculate the correlation with x:

C(x) = Concat
(
E

1
4
t (p1) · E

1
4
s (x), E

1
4
t (p2) · E

1
4
s (x), · · · , E

1
4
t (pn) · E

1
4
s (x)

)
(5)

where pn ∈ G(x′) and · denotes the matrix multiplication. Coarse-scale optical
flow predictions help focus on the neighborhood, effectively reducing computa-
tional complexity and identifying potential accurate matches. Upsampled F

1
4
up(x)

and C(x) are passed through two separate convolutional layers to obtain deep
features, which are then concatenated and fused through a convolutional layer.
The fused feature is further combined with F

1
4
up and the original image feature

E
1
4
s to generate the optical flow adjustment ∆F

1
4
up. Finally, the refined optical

flow F 1
4 is calculated as F

1
4
up +∆F

1
4
up. By following the same procedure, we can

derive the refined optical flow F∗ at the original image resolution.

2.3 Fusion Module

The decoder’s multi-scale structure, combined with its image generation capa-
bility, enables effective deep fusion of texture information. Therefore, we fuse
the registered multi-scale deep features from two encoders with the correspond-
ing scale features of the decoder using skip connections. This strategy allows
us to retrieve and fuse surrounding information even in the presence of small
registration errors, thereby reducing noise and restoring high-fidelity textures.

The predicted F∗ is downsampled to construct an optical flow pyramid
Fm

∗ (m = 1, 1
2 ,

1
4 ,

1
8 ). This is combined with the multi-scale features of the en-

coder Em
t and Em

s , as well as the multi-scale features of the source image decoder
Dm

s , to calculate the fusion feature Dm
fuse. The process is defined as:
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Em
reg = warp(Fm

∗ , Em
t )

Em
temp = ResBlock(Concat(Em

reg, Em
s ))

Dm
fuse = ResBlock(Concat(Em

temp,Dm
s )).

(6)

where m means the feature scale, warp operator represents warping the target
feature Em

t using the optical flow Fm
∗ to obtain the registered feature Em

reg, and
the detailed architecture of ResBlock is in Fig.2(c). Finally, the fused feature
D1

fuse is passed through the Layer Normalization, swish activation function, and
a convolutional layer to generate the final texture map Ifuse.

2.4 Training Loss

The overall self-supervised objectives Lself is divided into three parts: Appear-
ance loss Lap consists of the L1 loss Lrec and SSIM loss LSSIM , which are used
to measure the pixel-wise difference and consistency between the predicted and
GT texture map. Total variation loss LTV is used to regularize the predicted op-
tical flow Fp to be smooth. The perceptual loss Lp makes results Ifuse visually
similar to input Is following VQ-GAN[3]. The final loss is defined as:

Lself =
m∑
i=1

(λ1Lap(I
m
s′ , I

m
s ) + λ2LTV (Fm

∗ )) + λ1Lap(Ifuse, Igt) + Lp(Ifuse, Igt),

(7)
where m means the feature scale, λ1, λ2 are the weights of different loss terms,
Ims′ and Ims represent the input and reconstructed source texture map using
predicted optical flow Fm

∗ at scale m, and Ifuse, Igt are the fused texture map
and ground truth texture map.

3 Experiments

3.1 Datasets

To verify the effectiveness of the proposed framework, we use two public in-
vivo datasets SCARED [1] and Hamlyn[17]. Drawing inspiration from [18], we
randomly selected pairs of high-definition images with frame intervals of 1-10
frames from the original video and performed degradation operations on them
to generate low-definition images, thus creating the training and test sets. After
training on SCARED, we directly validated it across four test sets of the Hamlyn.

3.2 Experimental Settings

The experiments were conducted using the Pytorch and Lightning library on
NVIDIA GeForce RTX 3090 GPUs. λ1, λ2 were set to 1, 0.1, respectively. The
network was trained for 20 epochs with a batch size of 8, input/output resolu-
tion of 256x256, and utilized the Adam optimizer with a learning rate of 2.5e-5..
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Table 1. Quantitative Results on Hamlyn Dataset. Higher values indicate better per-
formance for all metrics. EndoMotion is abbreviated as E-M.

Methods Video1(1305 frames) Video2(1058 frames)
PSNR SSIM VIF PSNR SSIM VIF

E-M 80.69±3.833 0.531±0.113 0.439±0.12 75.328±3.357 0.411±0.158 0.28±0.124
E-M+MBB 83.798±2.689 0.702±0.046 0.538±0.059 79.382±2.598 0.667±0.066 0.44±0.084
E-M+ours 88.546±2.109 0.857±0.018 0.758±0.022 85.425±1.651 0.88±0.029 0.719±0.03

Video3(1529 frames) Video4(342 frames)
PSNR SSIM VIF PSNR SSIM VIF

E-M 82.236±3.447 0.492±0.132 0.418±0.122 74.919±2.442 0.463±0.129 0.301±0.104
E-M+MBB 84.781±2.104 0.674±0.05 0.509±0.058 78.463±1.754 0.692±0.051 0.446±0.067
E-M+ours 89.578±2.028 0.845±0.019 0.746±0.035 84.451±1.001 0.884±0.023 0.7±0.025

(𝑎𝑎)

(𝑏𝑏)

(𝑐𝑐)

Frame i on j Frame j EndoMotion OursMBB

Fig. 3. Qualitative results of 2D texture consistency and quality on Hamlyn dataset.
"Frame i on j" refers to the reprojection of frame i onto frame j. "EndoMotion" means
the weighted sum of frame j and the reprojected frame i. "MBB" denotes the outcome
of multi-band blending. "Ours" indicates the aligned texture using the predicted F∗.

Since there are no ground truth for corresponding points, we adopted the Struc-
tural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Visual
information fidelity (VIF) as three criteria to assess the texture consistency and
quality between adjacent frames.

3.3 Results and Analysis

We introduce EndoMotion [9] and EMDQ-SLAM [20] as comparisons, each rep-
resenting a distinct approach for handling textures. We began by employing
EndoMotion1 to extract the depth and pose for each frame. Subsequently, lever-
aging the poses and 2D mapping detailed in Section 2.1, we projected the point
cloud from the preceding frame onto the current one. With the captured image in

1 https://github.com/UZ-SLAMLab/Endo-Depth-and-Motion
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(𝑎𝑎) (𝑏𝑏) (𝑐𝑐)

EndoMotion

Ours

MBB

Fig. 4. 3D texture consistency and qualitative evaluation of two-frame fused mesh.

current frame, texture consistency can be assessed by computing the similarity.
Given that EMDQ is not open-sourced, MBB2 was employed for color blending
between two frames to avoid texture artifacts. Our method fused the misaligned
texture information from two frames, while providing the aligned texture map
using predicted F∗, which can be used for evaluation.

The quantitative results on the Hamlyn dataset are presented in Table 1.
Any misalignment in features due to inaccurate optical flow F∗ will result in
noticeable ghosting or artifacts in images generated by the frozen VQ-GAN,
making the textures even worse. Our proposed method outperforms the other
two methods in all metrics, demonstrating its ability to generate textures with
superior consistency and quality. Visual results are provided to illustrate the
performance of different methods on both 2D images and 3D meshes, as shown
in Fig.3 and Fig.4. EndoMotion exhibits misalignment blur in textures, while
MBB, although mitigating this phenomenon, still reduces the clarity of textures.
From the amplified details in rectangles, it can be observed that our method ef-
fectively eliminates the noise from the projected images by incorporating the
relevant information from the current frame. Finally, our method effectively cor-
rects texture misalignment, preserves the original texture details, and achieves a
superior texture for the reconstructed mesh compared to the other two methods.

4 Conclusion

A method for in-vivo 3D texture optimization is proposed to address texture
blurring or loss caused by inaccurate depth and pose estimation in the 3D recon-
struction process. By utilizing camera projection and interpolation regression,

2 https://github.com/CorentinBrtx/image-stitching
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point cloud textures are transferred to a more manageable 2D space. An effec-
tive registration module, designed with features from a pre-trained generative
network, aligns texture information from misaligned frames in a coarse-to-fine
fashion. Subsequently, a hierarchical decoding architecture efficiently fuses in-
formation from two frames to eliminate noise. Extensive experiments on public
datasets demonstrate the effectiveness and generalization across various laparo-
scopes. When pose estimation is inaccurate, the proposed method could select
neighboring keyframes to enhance the 3D texture. Future research aims to extend
the algorithm to entire video sequences, achieving incremental texture optimiza-
tion within the SLAM framework.
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