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Abstract. Brain structure-function interaction is crucial for cognition
and brain disorder analysis, and it is inherently more complex than a
simple region-to-region coupling. It exhibits homogeneity at the modu-
lar level, with regions of interest (ROIs) within the same module showing
more similar neural mechanisms than those across modules. Leveraging
modular-level guidance to capture complex structure-function interac-
tions is essential, but such studies are still scarce. Therefore, we propose
an interpretable modularity-guided graph convolution network (IMG-
GCN) to extract the structure-function interactions across ROIs and
highlight the most discriminative interactions relevant to fluid cogni-
tion and Parkinson’s disease (PD). Specifically, we design a modularity-
guided interactive network that defines modularity-specific convolution
operation to learn interactions between structural and functional ROIs
according to modular homogeneity. Then, an MLP-based attention model
is introduced to identify the most contributed interactions. The interac-
tions are inserted as edges linking structural and functional ROIs to
construct a unified combined graph, and GCN is applied for final tasks.
Experiments on HCP and PPMI datasets indicate that our proposed
method outperforms state-of-the-art multi-model methods in fluid cogni-
tion prediction and PD classification. The attention maps reveal that the
frontoparietal and default mode structures interacting with visual func-
tion are discriminative for fluid cognition, while the subcortical structures
interacting with widespread functional modules are associated with PD.

Keywords: Brain structure-function interaction · Modularity · Graph
convolution network · Attention · Cognition · Brain disorder.

1 Introduction

Brain functional connectivity (FC) illustrates temporal dependency patterns
between regional blood-oxygenation-level-dependent signals, measured through
resting-state functional MRI (rs-fMRI), while brain structural connectivity (SC)
represents the integrity of regional white matter pathways estimated from dif-
fusion MRI (dMRI). Previous studies suggest that FC tends to be strongest
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Fig. 1. The overall framework of IMG-GCN involves a modularity-guided interactive
network that utilizes FC and SC to define modularity-specific convolution operations,
capturing interactions across ROIs. Next, an MLP-based attention model is employed
to learn the salient interactions. A modularity-guided interactive graph is constructed
by integrating the interactive strengths with the original SC and FC matrices. Subse-
quently, the graph convolution network utilizes the newly constructed graph for down-
stream tasks, including prediction and classification.

among regions that are structurally connected [1, 2]. Alterations in the structure-
function relationship have been associated with changes in cognition [3, 4] and
brain disorders [5, 6]. However, most functional connections are formed without a
direct structural link [7]. Therefore, structure-function interaction is likely more
complex than a simple correspondence between paired regions of two modalities
[8]. High-order interactions across brain regions give rise to complex mappings
between structure and function [9]. Understanding these interactions across re-
gions can provide insight into the underlying structural foundation provided by
white-matter fiber tracts for brain function, and facilitate the detection of sub-
tle disruptions in brain connectivity that are more sensitive than using a single
modality, ultimately enhancing analyses of cognition and brain disorders.

The human brain is organized as a modular system [10], with a set of regions
of interest (ROIs) in each module that is less connected to ROIs in other modules
while highly interconnected within the module [11]. One typical modular sys-
tem divides the whole brain into distinct modules based on similar functional or
structural foundations, including visual, frontoparietal, default mode, dorsal at-
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tention, ventral attention, somatomotor, and limbic modules [12]. At the modular
level, structure-function interaction demonstrates homogeneity [13], with ROIs
within the same module exhibiting more similar neural mechanisms of structure-
function coupling than those across modules. Therefore, leveraging the modular
level guidance to capture the complex structure-function interactions has more
biological meaning, but it is often overlooked in existing studies.

Based on this, we propose an interpretable modularity-guided graph convo-
lution network (IMG-GCN) to extract complex structure-function interactions,
guided by modular homogeneity, while capturing salient interactions relevant to
cognition and brain disorders, as shown in Fig. 1. In IMG-GCN, we design a
novel modularity-guided interactive network for learning the cross-ROI interac-
tive strengths between two modalities through a modularity-specific convolution
operation, which simulates the coupling process across modules. A higher inter-
active strength represents a stronger coupling relationship between structure and
function. Then, a bottleneck-like multilayer perception (MLP)-based attention
model is employed to highlight the interactions that contribute most to tasks
through attention weights. By inserting the learned interactive strengths as edges
connecting all regions between SC and FC, we construct a unified graph and use
GCN for final tasks. To evaluate the effectiveness of IMG-GCN, we conduct
experiments for fluid cognition prediction and Parkinson’s disease (PD) classi-
fication. Experiments demonstrate that IMG-GCN outperforms SVM and five
state-of-the-art competing graph-based methods based on FC and SC. Further-
more, IMG-GCN provides interpretable attention maps revealing that large-scale
structure-function interactions, especially the frontoparietal and default mode
structures interacting with visual function, are discriminative for fluid cogni-
tion prediction, whereas abnormal brain subcortical structures interacting with
widespread functional modules are most discriminative for PD.

2 Materials and Methodology

2.1 Datasets and Image Preprocessing

For fluid cognition prediction, we used a dataset of 838 participants from the
Human Connectome Project (HCP) [14]. For PD classification, we used the
Parkinson’s Progressive Markers Initiative (PPMI) [15] dataset consisting of 69
normal controls and 72 patients with PD. Both datasets include corresponding
T1w, rs-fMRI, and dMRI images. For HCP, rs-fMRI and dMRI images were pre-
processed by the DPARSF 5.1 advanced toolkit and brain diffusion toolkit within
the FSL toolbox [16], respectively. For PPMI, rs-fMRI and dMRI images were
preprocessed by fMRIPrep [17] and Clinica [18]. FC and SC were constructed
with 116 ROIs, following the Anatomical Automatic Labeling (AAL) protocol
[19], including both cortical and subcortical structures. Fluid cognition scores
were extracted from the Fluid Cognition Composite (CogFluidComp) in the phe-
notype list of the HCP dataset, ranging from 87 to 147. Functional connectivity
between paired ROIs was computed using the Pearson correlation coefficient. A
modified version of Yeo 7-network parcellation [12] was used for both structural
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and functional modular systems. It was modified by introducing an additional
subcortical module, thus 8 modules were considered in our study.

2.2 Proposed Method

As shown in Fig. 1, the proposed IMG-GCN consists of (1) modularity-guided
interactive network, (2) MLP-based attention model, and (3) modularity-guided
interactive graph construction, with details introduced below.

Graph Representation The brain connectome can be naturally modeled as
a graph with brain ROIs as nodes and the connectivity between these ROIs as
edges. For each participant, a functional connectivity graph Gf = (Vf ,Af ,Xf )
is constructed. Af ∈ RN×N represents the adjacency matrix, defined as thresh-
olded functional connectivity matrix with preserving the highest 10% edges [20]

for each node to maintain its connection sparsity.Xf = {xf
1 ,x

f
2 , ...,x

f
N} ∈ RN×K

represents the features of N nodes, and xf
n is the feature of node n with length

K. Similarly, a structural connectivity graph Gs = (Vs,As,Xs) is constructed.
Note that Vs and Vf are the same sets of ROIs. As ∈ RN×N denotes the ad-
jacency matrix derived from dMRI, and Xs = {xs

1,x
s
2, ...,x

s
N} ∈ RN×K is the

features of N nodes. For each node in Gf or Gs, its node feature is defined as
the connectivity with all other nodes, respectively.

Modularity-Guided Interactive Network In this network, we capture cross-
ROI interactions between structure and function guided by the brain modular
system. The whole brain consists of M modules, where the module i contains
Ni ROIs, and

∑M
i=1 Ni = N . Given Xs and Xf , we concatenate the functional

node feature of every ROI in module i and the structural node feature of ev-
ery ROI in module j row by row, achieving the modularity-specific feature

Cij =


xf
i,1 xs

j,1

xf
i,1 xs

j,2
...

...

xf
i,Ni

xs
j,Nj−1

xf
i,Ni

xs
j,Nj

 ∈ RNiNj×2K , i, j ∈ [1,M ]. Here, xf
i,1 means the func-

tional node feature of the first ROI in module i, and xs
j,1 means the structural

node feature of the first ROI in module j. After concatenation, we achieve M2

modularity-specific features. For each featureCij , we define a modularity-specific
convolution operation with a filter hij , whose kernel size is 1× 2K, followed by
one rectified linear unit (ReLU), as

tij = ReLU(Cij ∗ hij) ∈ RNiNj×1, i, j ∈ [1,M ], (1)

where ∗ denotes the convolution operation. tij represents the interactions be-
tween all functional ROIs in module i and structural ROIs in module j. Our
hypothesis posits that ROIs within the same module of each modality exhibit
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more similar neural mechanisms of structure-function coupling than those across
modules. Guided by this coupling homogeneity within modules and heterogene-
ity across modules, we define M2 convolution filters for M2 modularity-specific
features. The cross-ROI interactions of the whole brain T is a concatenation of
those of all modules, as T = [t11; t12; ...; tij ; ...; tMM ] ∈ RN2×1, i, j ∈ [1,M ].

MLP-based Attention Model To identify the most relevant interactions for
prediction or classification, we introduce an attention mechanism inspired by an
existing squeeze-and-excitation network [21]. Recalling the interactions T, we
use a bottleneck-like MLP with two fully connected layers, one ReLU, and one
sigmoid activation to define the attention map S ∈ RN2×1 as,

S = Sigmoid

[
Fully2

(
ReLU

(
Fully1(T)

))]
. (2)

S identifies the interactions that contribute the most to the task. A higher at-
tention value in S indicates a greater contribution of the interaction to the task.
The first fully connected layer reduces the spatial dimension from N2 rows to
N2

r hidden nodes, and the second fully connected layer recalibrates N2 rows

from N2

r hidden nodes, where r is the bottleneck ratio of the fully connected
layers. The output of the attention model is defined as B = T ⊗ S , where ⊗
indicates element-wise multiplication. Through this multiplication, interactions
that contribute most to outcomes are enhanced, while those that contribute
least are suppressed. B can be reshaped into an N ×N matrix, representing the
interactive strengths between N structural nodes and N functional nodes.

Modularity-Guided Interactive Graph Construction Instead of simply
combining two graphs, we mergeGs andGf into a unified graphG = (V,A,X),
encoding high-order structure-function interactions. The total node set V =[
Vs

Vf

]
has a size of 2N , and accordingly, the node feature matrix is set as

X =

[
Xs

Xf

]
∈ R2N×K . To interlink Vs and Vf across nodes, we insert the inter-

active strength matrix B as N ×N edges connecting nodes in Vs and Vf . The

new adjacency matrix is A =

[
As,B
B,Af

]
∈ R2N×2N . Using this integration, the

structural and functional profiles associated with all ROIs are allowed to interact,
enabling analysis of the unified graph through a single graph convolutional layer
as Z = GCN(A,X) = ReLU(AXW). Here, W defines the convolution weights
for the unified graph. Finally, we use a readout layer employing the flattening
method on Z, followed by an output layer consisting of one fully connected layer
with dropout and ReLU, and another fully connected layer to generate the out-
come. Note that, the loss function is defined as RMSE between the output and
true values for the prediction task, and cross-entropy for the classification task.
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Fig. 2. The results of (a) fluid cognition prediction and (b) PD classification changes
with different bottleneck ratios in the MLP-based attention model.

Implementations IMG-GCN was implemented in PyTorch and trained using
an Adam optimizer, with learning rates set to 0.0005 for prediction and 0.0001
for classification, and training epochs set to 20 for prediction and 30 for clas-
sification. We conducted 5-fold cross-validation to validate model performance.
We ran 10 runs of cross-validation and reported average and standard devia-
tion of cross-validation accuracies. Pearson’s correlation coefficient, root mean
square error (RMSE), and mean absolute error (MAE) were employed to evalu-
ate prediction performance, while accuracy, sensitivity, and specificity were used
to quantify classification performance. To avoid overfitting, we used dropout lay-
ers after the readout layer and between two fully connected layers in the output
layer. Moreover, we adopted L2 regularization with a weight setting of 0.001 to
prevent overfitting.

3 Experiments and Results

Competing Methods and Hyperparameter Setting We comprehensively
compared IMG-GCN against a shallow method SVM (feeding the upper ma-
trices of the FC and SC together into the classifiers) and five state-of-the-art
methods based on brain FC and SC to predict fluid cognition and classify pa-
tients with PD. Specifically, M-GCN [22], HGNN [23] and MV-GCN [24]
combined the structure and function features for tasks without utilization of
interactions, whereas Cross-GNN [25] and Joint-GCN [26] utilized the inter-
actions between paired regions of two modalities without modular information.
In our IMG-GCN, N and K equal to 116, and M equals to 8. The bottleneck
ratio (r) in the MLP was set to 2 based on the optimal performance observed
in Fig. 2. The output layer comprised two fully connected layers with 256 and 1
hidden nodes for prediction, as well as 256 and 2 hidden nodes for classification.
The dropout rate was set at 0.5. We adjusted hyperparameters for competing
methods to suit our application. In M-GCN and HGNN, all hyperparameters
were set as in [22] and [23]. In MV-GCN, three fully connected layers were set
with 1024, 64, and 1 hidden nodes, respectively. For Cross-GNN, the feature
dimensions of GCN were set as 64. In Joint-GCN, three fully connected layers
were set with 3712, 256, and 1 hidden nodes. Other hyperparameters and learn-
ing rates were set based on their original publications. RMSE and cross-entropy
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were adopted as the loss functions for prediction and classification, respectively.
For classification, the last fully connected layer was set with 2 hidden nodes.

Comparison with Competing Methods Table 1 demonstrated the compari-
son results on HCP and PPMI datasets, listing the mean and standard deviation
of ten runs. All GCN-based methods generally outperformed the SVM method,
which relies on handcrafted node features without graph topological information.
Moreover, our IMG-GCN significantly performed better on both tasks than M-
GCN, HGNN, and MV-GCN, which do not utilize interactions. Compared with
Joint-GCN and Cross-GNN, our method significantly improved correlation by
10% to 14% on the fluid cognition prediction and accuracy by 2% to 6% on the
PD classification, respectively. We inferred these improvements were attributed
to capturing meaningful complex interactions between structural ROIs and func-
tional ROIs guided by modular homogeneity.

Table 1. Results of seven methods on HCP and PPMI based on FC and SC.

Methods
Fluid cognition prediction Parkinson’s disease classification

Correlation RMSE MAE Accuracy Sensitivity Specificity

SVM 0.24(0.03)∗ 13.19(0.95)∗ 11.89(0.67)∗ 0.76(0.09)∗ 0.77(0.09)∗ 0.73(0.08)∗
M-GCN 0.26(0.02)∗ 12.63(0.68)∗ 11.15(0.72)∗ 0.90(0.05)∗ 0.88(0.06)∗ 0.91(0.06)∗
HGNN 0.26(0.03)∗ 12.74(1.01)∗ 11.27(0.86)∗ 0.82(0.06)∗ 0.84(0.08)∗ 0.80(0.07)∗
MV-GCN 0.27(0.03)∗ 12.18(0.86)∗ 10.34(0.97)∗ 0.92(0.06)∗ 0.92(0.05)∗ 0.91(0.08)∗
Cross-GNN 0.28(0.02)∗ 11.95(0.82)∗ 10.08(0.66)∗ 0.93(0.07)∗ 0.94(0.08) 0.93(0.09)

Joint-GCN 0.29(0.01)∗ 11.78(0.89)∗ 9.87(0.74)∗ 0.90(0.12)∗ 0.92(0.09)∗ 0.87(0.11)∗
Ours 0.32(0.02)0.32(0.02)0.32(0.02) 11.27(0.75)11.27(0.75)11.27(0.75) 9.36(0.79)9.36(0.79)9.36(0.79) 0.95(0.06)0.95(0.06)0.95(0.06) 0.95(0.06)0.95(0.06)0.95(0.06) 0.94(0.07)0.94(0.07)0.94(0.07)

’*’ indicates the results of IMG-GCN and the competing method are significantly
different, confirmed by the student’s t-test (p¡0.05).
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Fig. 3. Results of the ablation study of IMG-GCN, comparing with five degenerated
variants for (a) fluid cognition prediction and (b) PD classification. The term ’*’ indi-
cates the results of IMG-GCN and the degenerated variant are significantly different,
confirmed by the student’s t-test (p¡0.05).
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Fig. 4. The top 5% discriminative interactions between structural and functional ROIs
identified by the MLP-based attention model were associated with (a) fluid cognition
and (b) PD. Specifically, the attention map revealed that large-scale interactions con-
tributed to fluid cognition prediction, while abnormal subcortical structures interacting
with widespread functional modules were the most discriminative for PD classification.

Ablation Study In this experiment, we performed an ablation study to assess
the performance of each model. Our first aim was to evaluate the effectiveness of
the modularity-guided interactive network, and our second aim was to investigate
the significance of utilizing the MLP-based attention model. We compared the
proposed IMG-GCN with its five degenerated variants: single GCN performed
on 1) uni-modal FC and 2) uni-modal SC; 3) IMG-GCN without the modularity-
guided interactive network (all values in T were set as 0.1) (w/oMG); 4) IMG-
GCN without MLP-based attention model (w/oI); and 5) IMG-GCN (ours). Fig.
3(a) and 3(b) indicated that our IMG-GCN method significantly achieved the
highest correlation and the lowest RMSE and MAE, respectively for prediction,
as well as the highest accuracy, sensitivity, and specificity for classification.

Discriminative Structure-Function Interactions The top 5% discrimina-
tive structure-function interactions for fluid cognition prediction and PD clas-
sification, identified by the attention weights S from the MLP-based attention
model, are shown in Fig. 4. Large-scale structure-function interactions play a
crucial role in fluid cognition prediction (see Fig. 4(a)). Specifically, these inter-
actions involve the frontoparietal and the default mode structures, both associ-
ated with high-order cognitive processes, interacting with the visual functional
module, mainly contributing to the prediction. Integrating visual information
and high-order cognition processes facilitates the executive function [27] - a cen-
tral component of fluid cognition. Variability in the structure-function coupling
between the visual and high-order cognition processing modules is related to dif-
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ferent fluid cognition states [28]. Thus, our attention model identifies biological
meaningful structure-function interactions associated with fluid cognition.

Abnormal interactions in the subcortical structural module widely interact-
ing with functional modules are most discriminative for PD classification (see
Fig. 4(b)). Compared with a current study only focusing on cortical structure-
function coupling [29], our results provide further insights into biomarkers in the
subcortical module for PD. Previous findings have reported that PD is primar-
ily characterized by the loss of dopaminergic cells and atrophy in subcortical
regions [30, 31]. Our findings suggest that the subsequent impact of these sub-
cortical structural changes spreads throughout the brain in patients with PD,
ultimately resulting in brain dysfunction.

4 Conclusion

We propose an interpretable modularity-guided structure-function interactive
learning network for cognition prediction and PD classification. The salient
maps identified by the attention model indicate the salient biological meaning-
ful structure-function interactions associated with fluid cognition and PD. Our
work can be further applied to datasets related to brain diseases, such as autism
and schizophrenia, to identify salient structure-function coupling markers.
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