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Abstract. Accurate biventricular segmentation of cardiac magnetic res-
onance (CMR) cine images is essential for the clinical evaluation of heart
function. However, compared to left ventricle (LV), right ventricle (RV)
segmentation is still more challenging and less reproducible. Degener-
ate performance frequently occurs at the RV base, where the in-plane
anatomical structures are complex (with atria, valve, and aorta) and
vary due to the strong interplanar motion. In this work, we propose to
address the currently unsolved issues in CMR segmentation, specifically
at the RV base, with two strategies: first, we complemented the public
resource by reannotating the RV base in the ACDC dataset, with re-
fined delineation of the right ventricle outflow tract (RVOT), under the
guidance of an expert cardiologist. Second, we proposed a novel dual en-
coder U-Net architecture that leverages temporal incoherence to inform
the segmentation when interplanar motions occur. The inter-planar mo-
tion is characterized by loss-of-tracking, via Bayesian uncertainty of a
motion-tracking model. Our experiments showed that our method sig-
nificantly improved RV base segmentation taking into account temporal
incoherence. Furthermore, we investigated the reproducibility of deep
learning-based segmentation and showed that the combination of consis-
tent annotation and loss of tracking could enhance the reproducibility
of RV segmentation, potentially facilitating a large number of clinical
studies focusing on RV.
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1 Introduction

Automatic segmentation of heart chambers is crucial for quantitatively assessing
heart functions from cardiac magnetic resonance (CMR). Besides the left ventri-
cle (LV), there is a growing clinical interest in accurate assessment of the right
ventricle (RV), given its significance in heart and lung diseases [11,10,22,16].
In recent years, several challenges have been dedicated to evaluating automatic
CMR segmentation, including the ACDC challenge [4], M&M [5], and M&M-
v2 [16] which particularly focuses on RV. Results reveal that the nnUNet fami-
lies [12,1] have overall superior performance in biventricular segmentation, but
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RV has degenerated performance compared to that of LV [21,4,5,16]. Degener-
ation is especially pronounced at the RV base, due to the irregular RV shape,
large variability, and complex anatomical context [27]. Segmentation of basal
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Fig. 1. (a) Anatomy of LV and RV. The basal imaging plane covers the right ventri-
cle outflow tract (RVOT), pulmonary valve (P), and tricuspid valve (T) [20]. (b) A
short-axis basal slice contains atria (in green), P (in blue), and RVOT (in red), with
complex and varying layouts. (c) Motion tracking has high uncertainty here (ub and us,
defined in Section 2.1), indicating loss-of-tracking. (d) RV segmentation by 10 Bayesian
ensembles exhibits high uncertainty, resulting in a poorly reproducible volume estima-
tion ranging from 0.2 to 37.8 mL.

slices is intrinsically challenging, because clinical cine MRI is 2D+t, with each
plane imaged in a separate breath-hold, unable to capture the complex 3D+t spa-
tiotemporal motion at the base. Ventricles, atria, and valves all have inter-planar
movements [16,26], as shown in Fig. 1 (b). This complicates basal segmentation,
resulting in quantitative errors of RV assessment [4,16].

More specifically, RV segmentation error stems from the region of the right
ventricle outflow tract (RVOT). RVOT is a pathway where the blood exits RV
and enters the pulmonary artery [11], spanning from the right side of the tri-
cuspid valve to the pulmonary valve [8] (Fig. 1 a). RVOT needs to be included
for accurate RV quantification, but it is often overlooked in the annotations of
public CMR datasets [26,4,5,16]. Common protocols delineate RV when the full
cavity is covered [4,5,16] while RVOT is labeled as RV or background depending
on cases or observers. This inconsistency in the annotation can affect the con-
fidence of the neural network [13]. Segmentation models, even when trained on
the same dataset [9,15,13], will have high uncertainty on basal slices, resulting in
low reproducibility of volume quantification. A typical example is shown in Fig. 1
(d), where different segmentation models make varying RV predictions, indicat-
ing low reproducibility of RV volume estimation [9,29,28]. This undermines the
reliability of the assessment of RV function.
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Traditionally, temporal coherence is leveraged to improve the segmentation
performance of CMR, because segmentation tends to be continuous in time and
space [17,18,25,24,7,2]. Nilsson et al. proposed a spatial-temporal Gated Recur-
rent Unit (ST-GRU) [17] to promote coherence of segmentation maps. In CMR
segmentation, joint motion estimation and segmentation proved to be mutually
beneficial [18]. Yan et al. proposed a flow-based feature fusion framework [25,24]
to integrate temporal coherence. Similarly, Wu et al. explicitly encoded the flow
as an additional feature for segmentation [23,7]. Bai et al. leveraged recurrent
neural network (RNN) for cine segmentation with registration-based pseudo-
labels [2].

However, the same principle does not apply to the RV base, because of the
strong in-plane anatomy change (Fig. 1 b). Intuitively, estimating the motion be-
tween temporal frames at RV base is ill-posed, i.e. a well-trained motion tracking
model will fail to track due to the inter-planar motion, a phenomenon we here-
after call loss-of-tracking. Hence, instead of leveraging the temporal coherence,
we propose the opposite: we make use of the temporal incoherence, which can
be identified by motion tracking uncertainty. This uncertainty highlights the
inter-planar motion of different structures (Fig. 1 c) and is highly informative.

We propose a novel loss-of-tracking-based method to tackle the currently un-
solved RV base segmentation in CMR analysis, with the following contributions:

– For a more accurate RV definition, we complemented current public resources
by providing refined RV base annotations for the ACDC dataset [4], under
the guidance of an expert cardiologist. This complemented community re-
source can be used to train and evaluate RV segmentation algorithms.

– We propose a Bayesian motion tracking framework for CMR cine, to estimate
the tracking uncertainty (loss-of-tracking) which can identify the interplaner
cardiac motion in an unsupervised manner.

– We integrate this tracking uncertainty into a Dual-Encoder UNet architec-
ture to enhance segmentation performance in the challenging regions of RV
base.

– In addition, we demonstrated that the low reproducibility of deep learning
segmentation can stem in part from the annotation inconsistency. Our work
improved the RV segmentation reproducibility with refined RV annotation
and loss-of-tracking.

2 Method

2.1 Loss-of-Tracking Detection via Registration Uncertainty

We formulate the motion estimation problem as the registration between two
temporal frames It and It+δt in a cine MRI. A VoxelMorph model [3] V is
trained to predict the deformation field ϕt = V (It, It+δt). Since the temporal
cine images have similar contrast, we use the simple mean square error (MSE)
us as the image similarity metric, and regularize the smoothness of the estimated
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Fig. 2. The Dual-Encoder UNet architecture for CMR segmentation: the upper path
encodes the original image, while the lower path encodes the “loss-of-tracking” from It
to It+δt, identified by a Bayesian motion-tracking model. The decoder D predicts the
segmentation map from the fused image feature fI and loss-of-tracking feature fϕ.

field ϕt via a gradient-based regularizer R. The loss function for motion tracking
model training is:

Lreg(ϕt; It, It+δt) = us(ϕt ◦ It, It+δt) + λR(ϕt) (1)

= ∥ϕt ◦ It − It+δt∥22 + λ∥∇ϕt∥22,

where ◦ denotes the warping operation. At test time, the registration uncertainty
can be inferred in two ways. First, we can evaluate the similarity between the
warped image and the target image with us:

us(ϕt, It, It+δt) = ∥ϕt ◦ It − It+δt∥22, (2)

where an elevated level of us indicates regions of registration failure. Second, the
model uncertainty of the trained registration network V can be estimated from
a Bayesian perspective [9,29], which derives the tracking uncertainty from the
posterior p(w|D) of network weights w, with D being the training dataset. The
Bayesian uncertainty of motion ub is estimated via:

ub(ϕt, It, It+δt) ≈ std {Vwi
(It, It+δt)}Mi=1 , (3)

where std is the standard deviation operator, {wi ∼ p(w|D)}Mi=1 is a set of M
weights drawn from the posterior distribution, and Vwi

denotes the trained model

with weight wi. We draw the posterior samples {wi ∼ p(w|D)}Mi=1 via the Hamil-
tonian Monte Carlo (HMC) method [6,29,28].

2.2 Uncertainty-guided Segmentation

Network Architecture We propose a Dual-Encoder UNet architecture that
takes both the image It and its motion uncertainty uϕ, which highlights the
basal areas with interplanar motion, as input. Specifically, we use an encoder EI

for image encoding and an additional encoder Eϕ for loss-of-tracking encoding.
The image encoder EI encodes the current temporal frame It and outputs the
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feature fI = EI(It). The loss-of-tracking encoder Eϕ learns a representation
fϕ = Eϕ(ub, us) of the estimated motion uncertainty. The feature fusion is then
performed by a learnable convolutional layer Fu, and the aggregated feature fa
is expressed by

fa(It, ub, us) = Fu (cat (fI , fϕ)) . (4)

Subsequently, fa is fed into the decoder D for the final segmentation predic-
tion. Skip connections between the encoder and decoder are preserved as in
the original U-Net [19]. The overall segmentation model is hence expressed as
S = D◦Fu ◦cat◦(EI , Eϕ). We show the proposed network architecture in Fig. 2.

Bayesian Segmentation and Reproducibility We used the same Bayesian
HMC principle to generate a range of models [9,29,28]. This Bayesian ensem-
ble of segmentation networks is denoted by {Sθj}Mj=1, parameterized by weight

posterior samples {θj ∼ p(θ|D)}Mj=1. Bayesian segmentation is performed via

St =
1

M

M∑
j=1

Sθj (It), σv(It) ≈ std
{
V ◦ Sθj (It)

}M

j=1
, (5)

where St is the segmentation of It, V is the volume calculation operator, and σv

additionally quantifies the model reproducibility as the standard deviation (SD)
of RV volume predicted by the Bayesian ensembles.

With ACDC standard labels, previous work has reported degenerate per-
formance at the RV base, accompanied by high uncertainty [4,5,16,29]. In the
literature, degraded performance is often attributed to network generalizability
or domain shift. However, a less explored hypothesis is that the training data can
also play a role: if the annotation is inconsistent, the prediction from multiple
trained models is also inconsistent. To validate the hypothesis and demonstrate
the benefit of the refined RV annotation, we evaluated the RV segmentation
reproducibility using the standard ACDC and our complemented ACDC anno-
tation.

3 Data and Experiments

Dataset We evaluated our method on the publicly available ACDC dataset [4].
It consists of cine images of 150 subjects, of which 100 serve as the training
set, and the remaining 50 subjects are reserved for testing. Under the guidance
of an expert cardiologist, we reannotated RV, including RVOT, on basal slices
using the 3D Slicer [14] for all 150 subjects. In total, we manually refined the
segmentation map on 240 slices of the original datasets (135 on the training split
and 105 on the test split). In the following, we denote the original ACDC dataset
as Original, and our relabeled dataset as New. We will open-source the new
RV annotations on GitHub.
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Experimental Settings We used nnUNet [12] as our segmentation backbone,
sticking to its original loss function, optimizer, and network plan. Specifically, we
trained a 2D nnUNet with all training samples, to be the baseline. To identify
loss-of-tracking, we trained a motion tracking network using the VoxelMorph
backbone [3], on images with a phase difference of δt = 4. Furthermore, we
trained an ST-GRU network [17], as a contrastive baseline that leverages tem-
poral coherence for refined segmentation. For our Dual-Encoder UNet, we used
the same encoder architecture for the loss-of-tracking input as for the image
input, following the nnUNet design. We used M = 10 HMC samples to build
Bayesian ensembles, both for VoxelMorph (motion-tracking) and Dual-Encoder
UNet (segmentation).

4 Results

4.1 Segmentation Accuracy

We evaluated the segmentation performance of the three methods on RV, using
the new label as ground truth. We divided each short-axis volume into basal,
middle, and apical slices and evaluated segmentation accuracy on end-systolic
(ES) and end-diastolic (ED) volumes separately. The accuracy measured by Dice
coefficients is listed in Table 1 on the three regions and the full volume. The table
shows that the vanilla nnU-Net already forms a strong baseline for RV segmen-
tation. Using the coherence-promoting ST-GRU leads to reduced segmentation
accuracy. With the loss-of-tracking encoding, our proposed method outperforms
the Vanilla U-Net, especially on the basal slices with an improvement of 1.2%
and 3.3% at ED and ES volumes, respectively. In comparison, the improvement
on the middle and apical slices is marginal in comparison with that on basal
slices.

Table 1. Segmentation accuracy of RV measured by the Dice coefficient [%] on basal,
middle, apical slices, and the full volume. Improvements with statistical significance
(p < 0.05) using the Wilcoxon signed-rank test are labeled with *.

Methods
Base Mid Apex Full

ED ES ED ES ED ES ED ES

U-Net
90.1

(±9.0)
80.7

(±22.4)
94.5

(±2.7)
90.2

(±5.1)
86.9

(±10.4)
70.9

(±26.1)
92.9

(±2.6)
88.5

(±4.7)

ST-GRU
87.3

(±9.1)
79.2

(±17.1)
91.0

(±4.2)
87.0

(±5.6)
78.1

(±15.2)
63.7

(±21.6)
89.4

(±3.4)
84.9

(±4.9)

Proposed
91.3*
(±7.3)

84.0*
(±16.5)

95.0*
(±2.6)

91.0*
(±5.0)

88.1*
(±9.8)

71.8*
(±26.8)

93.6
(±2.3)

89.5*
(±4.5)
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Fig. 3. Qualitative results of tracking uncertainty and segmentation. The left panel
shows the tracking uncertainty ub and us between It and It+δt. The right panel shows
the segmentation labels and predictions. In case (b), the atrium and valve (cyan arrows)
coexist with RV, and should not be included (c.f. the anatomy in Fig. 1).

In Fig. 3, we show some qualitative results of the loss-of-tracking detection
and the predicted segmentation maps. In case (a), the right ventricle preserves
its shape from It to It+δt, and the detected loss-of-tracking us and ub stays on
a relatively low level. On such images, all methods can correctly predict the RV
segmentation map. However, the ST-GRU prediction still has a small deviation
from the ground truth on ventricular borders (red arrow). We conjecture that
ST-GRU suffers from imperfect motion tracking here. In case (b), we show a basal
slice with strong interplanar motion on which the RV and valves can hardly be
distinguished from the single image It. The detected loss-of-tracking ub highlights
the area that cannot be tracked from It to It+δt, mainly in RVOT. The MSE
pattern us approximately delineates the separation between the valves and the
RV. In this slice, the U-Net has difficulty in predicting RV segmentation in
a single image It, but the proposed method can successfully predict the RV
border with loss-of-tracking taken into account. In this case, taking segmentation
consistency for granted like ST-GRU can harm the segmentation accuracy.

4.2 Segmentation Reproducibility

In this section, we compare the reproducibility measured by the standard de-
viation of RV volume from Bayesian ensembles of segmentation networks. To
validate the role of annotation, we repeated the experiments on both the Origi-
nal and New ACDC annotations. Fig. 4 shows the distributions of σv of the RV
base in the ED and ES phases, respectively. The statistics are reported for the
testing datasets.

All methods have a volume variance that peaked at a relatively low value
(< 5 ml), especially at ES. However, we observe that the U-Nets trained with
the original annotations have a longer tail than networks trained with the new
annotations. The proposed method exhibits the highest reproducibility with a
sharp peak. Fig. 5 (a) is a basal slice that covers the partial atrium and valve
(cyan arrows) on the image plane. In this slice, we observe that the networks
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Fig. 4. Distribution of segmentation reproducibility as measured by volume standard
deviation σv. Statistics (mean ± std) are given in corresponding colors.
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Fig. 5. Examples of RVOT segmentation and reproducibility. High uncertainty indi-
cates strong disagreement among different ensemble models. (a) Models trained with
the original labels are uncertain on basal slices with both the valve and atria (cyan
arrows) inplane. (b) The reproducibility is largely improved by the new annotations,
and further reduced by the proposed method.

trained with the original annotations are highly uncertain, resulting in a volume
SD of 12.3 ml. In contrast, the networks trained with the new annotations suc-
cessfully delineate the RVOT and have a reduced SD of 1.1 ∼ 1.4 mL. In Fig. 5
(b), we show a case in which the vanilla U-Nets can have low reproducibility
because the RVOT and atrium are not distinguishable, with σv = 8.2 mL. In
comparison, our proposed method reduces σv to 1.2 mL. The results suggest that
consistent annotation and loss-of-tracking can greatly improve reproducibility
when segmenting difficult regions like the RV base.

5 Conclusion

Accurate biventricular segmentation of CMR cine images is important for the
clinical evaluation of heart function. In this work, we set out to tackle the cur-
rent challenges of segmenting RV base, for more accurate and reproducible RV
assessment. We proposed a novel dual encoder U-Net architecture that leverages
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temporal incoherence, called loss-of-tracking, to identify the interplanar motion
at the base that previously deteriorated segmentation. Our experiments showed
that loss-of-tracking improved the segmentation of the RV base taking into ac-
count temporal incoherence. In addition, we complemented the public resource
with refined RV base annotation including RVOT. Our work showed that the
joint contribution of data and algorithm can lead to improved accuracy and re-
producibility for the currently difficult regions of the RV base, potentially leading
to more reliable RV assessment for future clinical studies.
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