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Abstract. Interactive segmentation techniques are in high demand in
medical imaging, where the user-machine interactions are to address the
imperfections of a model and to speed up the manual annotation. All re-
cently proposed interactive approaches have kept the segmentation mask
at the core, an inefficient trait if complex elongated shapes, such as wires,
catheters, or veins, need to be segmented. Herein, we propose a new data
structure and the corresponding click encoding scheme for the interac-
tive segmentation of such elongated objects, without the masks. Our
data structure is based on the set of centerline and diameters, providing
a good trade-off between the filament-free contouring and the pixel-wise
accuracy of the prediction. Given a simple, intuitive, and interpretable
setup, the new data structure can be readily integrated into existing
interactive segmentation frameworks.

Keywords: Interactive segmentation · Tube-shaped · Catheter segmen-
tation · Vessel segmentation

1 Introduction

Segmentation of tube-shaped objects is an important task in medical imaging
with a plethora of applications, ranging from the detection of elongated anatom-
ical objects (blood vessels, veins, arteries, nerves) to the registration of medical
devices (tubes, catheters, wires, electrodes). Co-localization of these objects may
help in early detection of malpositioned invasive devices, such as central venous
catheters, endotracheal tubes, and nasogastric tubes [15, 10, 19, 3, 13]. Coronary
arteries disease is another notable application, where a precise segmentation of
the arteries may help to identify the narrowing of the vessels [8]. In our work, we
propose an interactive segmentation framework for the tube-shaped objects with
the two potential use scenarios. First, the radiologists could improve their clinical
routine with the tube-shaped objects by interactively correcting the imperfec-
tions with their clicks. Second, our model could be used to accelerate manual
annotation of the tube-shaped objects during the data collection and labelling.

Interactive segmentation is a framework that makes it possible to control seg-
mentation results by considering an input from a user [9, 12]. Such interactions
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with the user help to localize the target objects and to adjust the predictions. The
interactions can be encoded as coarse bounding boxes, text prompts, scribbles,
mouse clicks, etc. Following the success of the click-based interactive methods
in the natural domain [12], we aspired to adapt them to the medical segmenta-
tion of the elongated objects, one area of medical imaging where conventional
binary segmentation can be a sub-optimal structure resulting in inefficient and
inaccurate predictions [11].

Related Work. The noteworthy advances in 2D click-based methods mostly
happened in the natural images domain. An iterative training and the mask guid-
ance approach RITM was proposed in [12], where the inference-time optimization
techniques were substituted by adding the previous segmentation outputs of the
model during the training. An additional target crop and mask update in the
localized regions was proposed in FocalClick [1]. The authors of SimpleClick [6]
offered a visual transformer backbone and a symmetric patch embedding layer
to encode the clicks into the backbone. A more generalized approach that can
use the click interactions was proposed in Segment Anything (SAM) [4], where
a foundation model, trained on a large amount of diverse data, was combined
with the different interaction encodings.

Interactive segmentation is particularly important in medical imaging due to
the effort required for attaining the annotation in this domain [21, 16]. A combi-
nation of a non-iterative and an interactive segmentation methods was proposed
in DeepEdit [2], improving the 3D segmentation of prostatic lesions in abdom-
inal CT. Similarly to SAM, the authors of MedSAM [7] proposed a foundation
model for medical image segmentation and evaluated it using various 2D medical
segmentation benchmarks. Despite the remarkable improvements in the bench-
marks, both methods can not be directly applied to our task, because DeepEdit
was developed for 3D, and MedSAM relied on the bounding box interactions
instead of clicks.

2 Method

Our model is inspired by RITM [12] and the centerline data structure [11]. The
proposed method is illustrated in Fig. 1. We use convolutional HRNet [20] model
as encoder, which takes an input image of shape (3, h, w), where h and w are
the height and the width of the image. In contrast to RITM that encodes to
input only positive and negative clicks, our encoded clicks are of shape (4, h, w),
where the first two channels encode Tip 1 and Tip 2 clicks correspondingly, and
the last two channels are for the positive and the negative clicks. As in RITM,
the model takes predictions from the previous click as the input. In our case,
predicted mask, landmarks, and distance transform are appended to the input
image and the encoded clicks. Unlike RITM, that predicts only a binary mask of
the object, our model outputs the heatmap of the centerline coordinates of the
shape (nctr, h, w), where nctr is a selected number of points used to represent the
centerline. In contrast to [11], that operates only with a centerline, our model
outputs a mask distance transform of shape (1, h, w) to fix the static width issue.
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Fig. 1. Interactive segmentation scheme. CNN encoder takes input image, encoded
clicks, and output from the previous click prediction (if available) and produces cen-
terline landmarks and distance transform of the target object. Then, they are used to
restore the mask of the object. Predictions, GT landmarks, and distance transform are
used to generate the next positive and negative clicks during training.

In addition, we predict a mask of shape (1, h, w), used only for an auxiliary
loss. Both the centerline coordinates and the distance transform can be used to
restore a binary mask of the target object. The ground-truth (GT) landmarks,
GT distance transform, and GT mask are used to calculate the loss function and
to update the encoder weights. In addition, GT data, predicted landmarks and
distance transform are used for clicks sampling.

Clicks sampling. During the training, we use two click sampling schemes
to simulate user interactions: initial clicks sampling [18] and on-training clicks
sampling. Initial clicks sampling corresponds to the first feeding of the model at
time point t = 0. Similarly to minimal path methods [5], we use the tip clicks to
guide the model. We randomly choose the order of the tip clicks (Tip 1, Tip 2) or
(Tip 2, Tip 1) that defines the order of centerline landmarks: the first landmark
corresponds to the first tip in the encoding, and the n-th point corresponds to
the second tip. Then, we sample npos ∈ [0, nmax) positive clicks from the target
foreground mask and sample nneg ∈ [0, nmax) negative clicks from either the
foreground masks of different objects or the background. Given the input image
and the encoded clicks, our model outputs mask ŷm, centerline landmarks ŷctr,
and distance transform ŷdt. During the iterative updates at time points t =
[1; tmax] we use predictions from the previous step to generate exactly one new
click according to the on-training clicks sampling scheme (Algorithm 1), where
ŷcoord and ycoord are the predicted and the GT centerline coordinates, r(c, k)
is the function that uniformly resamples coordinates c to the fixed number of
points k, d(a, b) is the directed Hausdorff distance (HD) function that returns the
distance between a and b and the corresponding coordinate from a. Specifically,
we select the regions on a centerline with the largest HD and assign positive
clicks to the false negative regions and negative clicks to the false positive regions.
In case predicted centerline and GT centerline are close enough to each other
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(dfp > minfp and dfn > minfn), we create a negative click on the foreground
area with the largest error in the distance transform prediction. That click takes
into account potential negative correction of the width.

Algorithm 1 On-training sampling
Input: ŷcoord, ycoord, ŷdt, ydt, ym. ▷ Cent. coords, dist. transforms, GT mask
ŷcoord ← r(ŷcoord, k), ycoord ← r(ycoord, k)
dfp, pfp ← d(ŷcoord, ycoord)
dfn, pfn ← d(ycoord, ŷcoord)
if dfp > dfn and dfp > minfp and pfp not in ym then

return: pfp ▷ Negative click on a false positive region
else if dfn > minfn then

return: pfn ▷ Positive click on a false negative region
else

pdt ← argmax[(ydt − ŷdt)
2 not in ym] ▷ Negative click on a foreground

return: pdt ▷ with the largest distance transform error
end if

Loss function. The loss function is an unweighted sum of three components:
Lctr, Ldt, and Lsegm. Lctr is a mean cross-entropy, calculated for each centerline
point and averaged over a number of points, where only 1 pixel of GT point
location has a positive label. Ldt is a mean squared error between the predicted
distance transform of the mask and the GT. Following [12], Lsegm is a segmen-
tation loss (focal plus binary cross-entropy) calculated for the predicted mask.
In our case, it is used only as auxiliary loss to stabilize the training. Predicted
masks are not used in the output. Inference and mask restoration. The inference
starts when the user selects a target tube-shaped object in an input image and
clicks on Tip 1 and Tip 2. These clicks are encoded and stacked together with
the input image and are passed to the model. The model outputs centerline coor-
dinates, the diameter of the object on the centerline coordinates, and a restored
mask. Given the output, the user can add a positive click to missed regions or a
negative click to false positive regions. After the encoding, that click is appended
to the initial tip clicks, input image, and the current output of the model and are
used as the next input for the model. The procedure is repeated until the user
stops adding clicks. The centerline coordinates and the distance transform after
the last click are used for the mask restoration. The mask restoration works as
drawing with a spherical brush of a variable size. Namely, the brush trajectory
is sampled along the predicted centerline using a linear interpolation. The brush
size is sampled from the predicted distance transform as the maximum value at
the ϵ-px neighborhood of the point on the centerline. The resulted trajectory of
the variable brush size is the restored mask.
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3 Experiments

3.1 Data

Chest x-ray catheters and tubes. We used 9085 unique images from CliP data
[15, 17], with the total number of 11629 unique central venous catheters (CVC),
2994 endotracheal tubes (ETT), and 3219 nasogastric tubes (NGT).
Coronary angiography. Semi-synthetic coronary angiography was used to evalu-
ate blood vessels segmentation. Following the methodology in [11], we generated
10000 synthetic coronary trees with a realistic cardiac background. For each im-
age, we generated left anterior descending artery (LAD), left circumflex artery
(LCX), diagonal 1 (D1), and left marginal arteries (M1). During the training,
there were no distinctions between the objects from the different classes, mean-
ing there was a single model for the chest x-rays and a single model for the
coronary angiography.

Table 1. Number of clicks (NoC) required to reach certain metric value ∗ (NoC∗).
Notice that our method is on par with the segmentation models, outperforming them
in terms of object integrity (# ccs. and the Hausdorff distance).

Chest x-ray
Dice Soft Dice Hausdorff # ccs.

NoC85 NoC90 NoC90 NoC95 NoC4 NoC3 NoC2 NoC1
RITM 7.448 9.200 3.397 6.618 8.232 8.972 3.294 4.657
FocalClick 9.438 9.937 6.763 9.174 9.698 9.876 3.411 4.833
SimpleClick 8.579 9.644 4.038 8.195 8.767 9.381 2.163 3.366
Ours 8.685 8.990 5.737 8.280 4.622 6.695 2.000 2.000

Angiography
Dice Soft Dice Hausdorff # ccs.

NoC85 NoC90 NoC90 NoC95 NoC4 NoC3 NoC2 NoC1
RITM 1.542 2.505 1.198 1.937 5.069 5.260 4.513 5.433
FocalClick 3.303 5.308 1.996 4.262 7.315 7.614 3.876 5.500
SimpleClick 2.061 5.432 1.167 1.538 2.756 3.276 1.716 2.355
Ours 6.875 9.917 2.443 2.878 2.753 3.644 2.000 2.000

3.2 Model configuration

HRNet-18s [14] was used as the encoder network, taking images of size 512×512
and producing nctr = 33 (see Supplementary material) centerline points heatmaps,
1 distance transform map, and 1 segmentation map. All the outputs were of the
same size 512×512. The tip order was randomly sampled from two possible com-
binations, and the number of positive npos and negative nneg clicks was randomly
sampled given the normalized probability values pcl+1 = pcl · γcl/

∑nmax

i=0 pi, p0 =
1, with the γ = 0.7. The maximum number of clicks nmax = 10 for each click
class. For the on-training sampling, we fixed minpos = 3, minneg = 7, and
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k = 127. During the mask restoration we sampled the maximum diameters from
the ϵ = 3 neighbourhood. The coordinate extraction was an expected value
calculation from the predicted logits after the softmax activation.

3.3 Results

We report the conventional number of clicks (NoC) metric that counts the aver-
age NoC needed to reach a specified segmentation metric value ∗ (NoC∗). As the
prediction metrics we compute Dice, Soft Dice, undirected HD, and a number of
connected components (# ccs). A Soft Dice score is an extension of Dice aimed
to address the impact of imperfections of the GT masks on borders caused by
labelling noise and the other factors. It is calculated as a standard Dice but
with the redefined confusion matrix. Given that f(·) is a morphological dilation,
TP = TP [f(ŷ), y] + TP [ŷ, f(y)] − TP [ŷ, y], FP = ŷ \ f(y), FN = y \ f(ŷ).
The dilation radius was set to 1 px. We compare our model with the state-
of-the-art interactive segmentation frameworks: RITM [12], FocalClick[1], and
SimpleClick[6] (see Supplementary material to check the hyperparameters). For
a fair comparison, the same click generation strategy as in [12] was applied to all
the models: the next negative or positive click is generated at the point farthest
from the boundaries of the corresponding error region.

Fig. 2. Average metric values with respect to the number of clicks. Red - RITM, blue
- FocalClick, brown - SimpleClick, green - ours. Notice how our method predicts true
number of components early on, while keeping the segmentation scores sufficiently high.

Table 1 shows the average number of clicks each model needed to reach a certain
metric value. We can notice a natural trade-off in our model performance. Our
model may require more clicks to reach the high value of pixel-to-pixel segmen-
tation metrics, such as Dice and Soft Dice, due to the point sampling limitations
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and the imperfections in the restored mask. At the same time, a smaller num-
ber of clicks is required to achieve consistent segmentation (lower HD values).
Moreover, in contrast to the other methods, there is an explicit guarantee that
only one connected component is produced, so there is no need for additional
clicks to remove false positive regions. Figure 2 shows the average segmentation
metric values, given the specified number of clicks. Figs. 3 and 4 showcase the
performance of the model on the images.

Fig. 3. Chest x-ray results. Left columns: click interactions, yellow for Tip 1, orange
for Tip 2, green is for positive clicks, red is for negative clicks. Middle column: predicted
centerline and sampled diameters of the target object. Right column: the restored mask.

4 Discussion

As can be noticed in Fig. 2, our model’s Dice and Soft Dice scores are not the
worst, yet not the best among the compared models. They quickly plateau and
fluctuate around some value. That plateau could be caused by the imperfections
in the mask restoration procedure due to the sampling procedure and the poten-
tial prediction errors, another possible explanation is the noise in the labels, as
the Soft Dice metric clearly suggests. At the same time, our model has already
produced consistent results without any outliers after just two clicks (lower HD
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Fig. 4. Coronary angiography predictions. Left column shows click interactions: yellow
and orange are for Tip 1 and Tip 2 clicks, green is for positive clicks, red is for negative
clicks. Middle column show predicted centerline and sampled diameters of the target
object. Right column shows restored mask

values, and always a single connected component). Notably, relatively high HD
values of the masked-based methods originate from the large number of false
positive connected components, which could be addressed by designing a proper
connected component analysis algorithm. In addition, initial tip clicks, rather
than the center-of-mass clicks, may help to better guide the model, potentially
further improving the outcome of the mask-based methods. Figure 3 shows the
model output and the interactive clicks. As seen from the top row, our model
can resolve very challenging cases of intersecting and overlapping catheter tra-
jectories. Namely, two positive clicks (green) and one negative click (red) helped
to point out a true centerline trajectory and dismiss the path of an adjacent
catheter. The bottom row of Fig. 3 shows the predictions for the tracheostomy
tube. Our model managed to work with high curvature of the tube exception-
ally well and produced a consistent result with minor border imperfections after
the two initial clicks. Such border imperfections may potentially decrease the
Dice score and the required NoC to reach high Dice values (Table 1, Fig. 2). In
practice, such border imperfection may be easily fixed by moving a few control
points of the contour line. Figure 4 shows the model output for the coronary
angiography data. Our model successfully handled the relatively high length,
high curvature, intersection regions, and overlapping regions. Remarkably, our
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model required only a few clicks to achieve that result. It is important to no-
tice, that the centerline-diameter data structure for segmentation is not limited
to RITM, but can be readily integrated into different interactive segmentation
frameworks with minor changes in the click encoding scheme and the loss func-
tion calculation, if needed. Moreover, the centerline as a sequential structure can
be predicted in an autoregressive way, potentially further improving the model’s
accuracy. It is also not limited to the click-based approaches and could be com-
bined with more suitable interactions for the tube objects, e.g. rough scribbles
or approximate outlines of the objects.

Conclusions. We addressed the problem of interactive segmentation of elon-
gated tubular objects, validating our solution both on anatomical objects and
on invasive medical devices. We combined the most recent techniques from the
interactive models in the natural domain [12] and enhanced the centerline-based
data structure [11] to be more suitable for tubular objects. Moreover, our model
fixed the static width issue of [11] by explicit regression of the distance transform
and the diameter sampling. Our data structure offers a trade-off between the ob-
ject integrity and the pixel-wise accuracy of segmentation; thus, it is an ideal
candidate for the integration with various existing interactive medical frame-
works.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Chen, X., Zhao, Z., Zhang, Y., Duan, M., Qi, D., Zhao, H.: Focalclick: Towards
practical interactive image segmentation. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 1300–1309 (2022)

2. Diaz-Pinto, A., Mehta, P., Alle, S., Asad, M., Brown, R., Nath, V., Ihsani, A.,
Antonelli, M., Palkovics, D., Pinter, C., et al.: Deepedit: deep editable learning for
interactive segmentation of 3d medical images. In: MICCAI Workshop on Data
Augmentation, Labelling, and Imperfections. pp. 11–21. Springer (2022)

3. Frid-Adar, M., Amer, R., Greenspan, H.: Endotracheal tube detection and seg-
mentation in chest radiographs using synthetic data. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 784–792.
Springer (2019)

4. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4015–4026
(2023)

5. Liao, W., Wörz, S., Kang, C.K., Cho, Z.H., Rohr, K.: Progressive minimal path
method for segmentation of 2d and 3d line structures. IEEE transactions on pattern
analysis and machine intelligence 40(3), 696–709 (2017)

6. Liu, Q., Xu, Z., Bertasius, G., Niethammer, M.: Simpleclick: Interactive image
segmentation with simple vision transformers. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 22290–22300 (2023)



10 I. Sirazitdinov, D. V. Dylov

7. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15(1), 654 (2024)

8. Pan, L.S., Li, C.W., Su, S.F., Tay, S.Y., Tran, Q.V., Chan, W.P.: Coronary artery
segmentation under class imbalance using a u-net based architecture on computed
tomography angiography images. Scientific Reports 11(1), 1–7 (2021)

9. Sakinis, T., Milletari, F., Roth, H., Korfiatis, P., Kostandy, P., Philbrick, K.,
Akkus, Z., Xu, Z., Xu, D., Erickson, B.J.: Interactive segmentation of medical im-
ages through fully convolutional neural networks. arXiv preprint arXiv:1903.08205
(2019)

10. Sirazitdinov, I., Lenga, M., Baltruschat, I.M., Dylov, D.V., Saalbach, A.: Landmark
constellation models for central venous catheter malposition detection. In: 2021
IEEE 18th International Symposium on Biomedical Imaging (ISBI). pp. 1132–
1136. IEEE (2021)

11. Sirazitdinov, I., Saalbach, A., Schulz, H., Dylov, D.V.: Bi-directional encoding for
explicit centerline segmentation by fully-convolutional networks. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
693–703. Springer (2022)

12. Sofiiuk, K., Petrov, I.A., Konushin, A.: Reviving iterative training with
mask guidance for interactive segmentation. In: 2022 IEEE Interna-
tional Conference on Image Processing (ICIP). pp. 3141–3145 (2022).
https://doi.org/10.1109/ICIP46576.2022.9897365

13. Subramanian, V., Wang, H., Wu, J.T., Wong, K.C., Sharma, A., Syeda-Mahmood,
T.: Automated detection and type classification of central venous catheters in chest
x-rays. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. pp. 522–530. Springer (2019)

14. Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., Mu, Y., Wang, X.,
Liu, W., Wang, J.: High-resolution representations for labeling pixels and regions.
arXiv preprint arXiv:1904.04514 (2019)

15. Tang, J.S., Seah, J.C., Zia, A., Gajera, J., Schlegel, R.N., Wong, A.J., Gai, D., Su,
S., Bose, T., Kok, M.L., et al.: Clip, catheter and line position dataset. Scientific
Data 8(1), 1–7 (2021)

16. Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T.,
David, A.L., Deprest, J., Ourselin, S., et al.: Interactive medical image segmen-
tation using deep learning with image-specific fine tuning. IEEE transactions on
medical imaging 37(7), 1562–1573 (2018)

17. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 2097–2106 (2017)

18. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object se-
lection. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 373–381 (2016)

19. Yi, X., Adams, S.J., Henderson, R.D., Babyn, P.: Computer-aided assessment of
catheters and tubes on radiographs: How good is artificial intelligence for assess-
ment? Radiology: Artificial Intelligence 2(1), e190082 (2020)

20. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic seg-
mentation (2020)

21. Zhao, F., Xie, X.: An overview of interactive medical image segmentation. Annals
of the BMVA 2013(7), 1–22 (2013)


