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Abstract. Sharing medical datasets among healthcare organizations is
essential for advancing AI-assisted disease diagnostics and enhancing pa-
tient care. Employing techniques like data de-identification and data syn-
thesis in medical data sharing, however, comes with inherent drawbacks
that may lead to privacy leakage. Therefore, there is a pressing need
for mechanisms that can effectively conceal sensitive information, ensur-
ing a secure environment for data sharing. Dataset Condensation (DC)
emerges as a solution, creating a reduced-scale synthetic dataset from a
larger original dataset while maintaining comparable training outcomes.
This approach offers advantages in terms of privacy and communication
efficiency in the context of medical data sharing. Despite these bene-
fits, traditional condensation methods encounter challenges, particularly
with high-resolution medical datasets. To address these challenges, we
present MedSynth, a novel dataset condensation scheme designed to ef-
ficiently condense the knowledge within extensive medical datasets into
a generative model. This facilitates the sharing of the generative model
across hospitals without the need to disclose raw data. By combining
an attention-based generator with a vision transformer (ViT), MedSynth
creates a generative model capable of producing a concise set of rep-
resentative synthetic medical images, encapsulating the features of the
original dataset. This generative model can then be shared with hos-
pitals to optimize various downstream model training tasks. Extensive
experimental results across medical datasets demonstrate that MedSynth
outperforms state-of-the-art methods. Moreover, MedSynth successfully
defends against state-of-the-art Membership Inference Attacks (MIA),
highlighting its significant potential in preserving the privacy of medical
data.

Keywords: Data sharing · Privacy · Dataset Condensation · Generative
Model · Membership Inference Attack · Vision Transformer.
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1 Introduction

Incorporating Artificial Intelligence (AI) into medical practice leads to advance-
ment and breakthroughs in areas like radiology, pathology, and the overall health-
care ecosystem [1, 2]. However, the data-intensive nature of AI in medicine em-
phasizes the need for substantial and high-quality data, highlighting the signif-
icance of collaborative medical data sharing among hospitals [3]. Nevertheless,
efficient data sharing faces challenges due to privacy concerns. Using methods
such as data synthesis [4] and data de-identification [5] in medical data shar-
ing, however, poses inherent challenges that could potentially result in privacy
leakage. Data de-identification techniques always carry a risk of re-identification
[6], and there is evidence that the models used in data synthesis may leak in-
formation related to the training samples, making them prone to Membership
Inference Attacks (MIA) [7]. Hence, it is essential to implement secure and de-
pendable solutions for sharing healthcare data.

Dataset Condensation (DC) [8] involves creating a reduced-scale synthetic
dataset derived from a large original dataset while still achieving comparable
training outcomes. This method provides advantages in terms of privacy [9,
10] and data storage efficiency [11]. Therefore, it is beneficial to explore med-
ical dataset condensation to address current challenges associated with med-
ical dataset sharing. Nevertheless, when dealing with high-resolution medical
datasets, traditional condensation methods [12, 13, 14, 15, 11] encounter diffi-
culties as they directly extract information from the original dataset into pixel
space, and the feature distribution of condensed samples frequently lacks diver-
sity.

To address the challenges, we present a novel dataset condensation (DC) ap-
proach named MedSynth aiming to condense the knowledge of a large medical
dataset into a single generative model. With this generative model, one can gen-
erate a concise set of representative synthetic images, encapsulating the features
of the original dataset. This is achieved by integrating an attention-based gen-
erator with vision transformer (ViT)-based feature refinement. By sharing only
the generative model, a hospital or other medical facility can securely contribute
its local data knowledge to another hospital. This facilitates enhancing data re-
sources for downstream tasks such as training and fine-tuning, while effectively
mitigating potential privacy risks.

We evaluate the effectiveness of MedSynth using ISIC 2019 and Alzheimer’s
MRI datasets and compare its efficiency with state-of-the-art methods. The key
contributions of our work can be outlined as follows:

1. We propose MedSynth, a novel dataset condensation scheme that efficiently
condenses the knowledge within extensive medical datasets into a generative
model for secure sharing across hospitals without disclosing raw data and
ensuring privacy protection.

2. We enhance the extraction of fine-grained information from medical images
by combining an attention-based generator with a ViT for feature matching.

3. Extensive experimentation on medical datasets demonstrates that MedSynth
outperforms state-of-the-art methods.
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4. We conduct a membership inference attack on MedSynth’s generative model
to confirm its resilience and successful protection of medical data privacy.

2 Related Work

Deep learning models need to be trained on extensive datasets for accurate
disease diagnosis, emphasizing the significance of healthcare data sharing. De-
identification [5] is a data-sharing technique that focuses on removing or making
anonymous any personally identifiable information from medical records. How-
ever, there is consistently a potential risk of re-identification in this process
[6]. An alternative solution to address data sharing limitations involves using
Generative Adversarial Networks (GANs) [4]. It facilitates the generation of
anonymous and potentially limitless synthetic datasets. Nonetheless, there is ev-
idence [7] that the models used in data synthesis may leak information related
to the training samples. Federated learning offers an alternative that trains a
joint model across many hospitals without sharing raw data [16, 17]. Instead,
each hospital trains the model locally and shares only its updates, keeping data
private. Nonetheless, it introduces a vulnerability, as model updates sent to the
central server are susceptible to gradient leakage attacks [18], potentially allow-
ing the reconstruction of original data.

A recent strategy called dataset condensation has emerged to address these
limitations. It can be achieved in two ways: either condensing the knowledge of
an entire original dataset into a few synthetic images or into a generative model.
several techniques follow the first method [12, 13, 14, 15, 11]. These methods
begin with a small number of learnable image tensors, which are then updated
by comparing the training trajectories [15], embedding distributions [13, 14], or
training gradients [11] with the original images. The second approach is utilized
by [19, 20]. IT-GAN [19] aims to explore if a fixed GAN can generate informa-
tive images without changing the dataset size or reducing training costs. DiM
[20], on the other hand, condenses the information of the original dataset into a
generator, although it has limitations when dealing with high-resolution medical
images. Current medical dataset distillation methods [21],[22] consider learning
soft labels in the synthetic set, meaning that the label is trainable for improved
information compression. The researchers [23] also proposed a distillation-based
approach, aiming to match the parameters of the teacher networks trained on the
original dataset with the student networks built on the distilled dataset. In [24], a
generalizable dataset distillation-based federated learning (GDD-FL) framework
is proposed to achieve communication-efficient federated skin lesion classifica-
tion. Our method is a generative-based method that condenses the knowledge
within extensive medical datasets into a generative model.

3 Methodology

The MedSynth works in two phases as shown in Figure 1. In the first phase,
an attention-based generator is trained to capture the features of the original
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medical dataset. In the second phase, the generator is fine-tuned using a ViT to
condense the important features into the synthetic dataset. Fine-tuning is ac-
complished by employing logit matching to compare the features of the synthetic
dataset with those of the original dataset.

Fig. 1. Workflow of our framework: 1) Phase I- Pre-train the attention-based generator
to create meaningful correspondences with original images. 2) Phase II- Fine-tuning the
generator by applying logit matching on image embeddings of original and synthetic
datasets produced by a fine-tuned ViT.

3.1 Phase I - Pre-Train the Generator

The attention-based generator used in the framework comprises an encoder, a
transition layer, and a decoder. The encoder reduces the image’s feature maps to
a quarter of their original size. Subsequently, in the transition layer, we replaced
the inner convolutional layers with six residual attention blocks (RABs). This
modification effectively captures long-range dependencies and highlights latent
features within the medical images. Finally, the decoder performs up-sampling to
generate two outputs: a generated image, denoted as g, and an attention mask,
denoted as a. The synthetic image, denoted as s, is defined as the weighted
combination of the generated image g and input x by a.

s = a× x+ (1− a)× g (1)

The synthetic image s is then fed to the discriminator Fa, which comprises of
9 convolution layers and 2 fully connected layers. As described in [25], Wasser-
stein distance with gradient penalty is utilized for calculating the GAN loss,
defined as:

LG = Ex[Fa(s)]− Ex[Fa(x)] + λGP

(
∇zFa(z)

2 − 1
)2 (2)

z = ϵ · x+ (ϵ− 1) · s, ϵ ∼ U [0, 1] (3)

where Ex[·] is the expected value of a function the input data and ϵ is the
same size as the input x, and has random values from 0 to 1. The Wasserstein
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distance is evaluated by the first two terms in LG, while the last term accounts
for the gradient penalty [26]. Additionally, we replaced standard batch normal-
ization with spectral normalization in the generator, as recommended by [27], for
improved stability during training with large batches and highly textured data
like medical images. The training phase is crucial, as our experimental findings
indicate a significant 25% degradation in classification performance without this
training step.

3.2 Phase II - Fine-Tune the Generator using ViT

In the second phase, the pre-trained generator from the first phase is fine-tuned
using a ViT to extract the important features into the synthetic dataset. While
previous works [13, 11, 20, 28], have utilized ConvNet models for feature vector
extraction, our study opts for the ViT architecture [29]. Unlike ConvNet, ViTs
utilize self-attention mechanisms, allowing them to directly compare and relate
features across the entire image and capture the fine-grained details in medical
scans. Their inherent inductive bias towards global features enables them to
learn efficiently from limited data, potentially overcoming the data bottlenecks
that hinder CNN-based approaches in this domain.

ViT for feature extraction - In our approach, we initially fine-tuned the
ViT on the original dataset to facilitate the extraction of feature vectors. Subse-
quently, the feature vectors of both the original and synthetic images, extracted
from the ViT, are compared using logit matching. This process aims to condense
the essential attributes of the original images into the generator, significantly en-
hancing the quality of synthetic images produced and serving as a key process
in the dataset condensation.

However, due to data scarcity and class imbalance in medical datasets, fine-
tuning the ViT becomes a challenge as the model starts to overfit. Our work
mitigates this problem by applying Low-Rank Adaptation (LoRA) [30] to per-
form parameter-efficient fine-tuning. LoRA significantly diminishes the number
of trainable parameters, reducing the risk of overfitting when fine-tuning a large
transformer-based model with limited data points. This enables the utilization
of ViT with medical datasets, which are typically limited in size.

Fine-tune generator via logit matching - For a batch consisting of au-
thentic images x and generated images S, we utilize a network n to predict the
classification logits for these images. To formalize, the alignment of logits can be
articulated as follows:

Ln = MSE(n(S);n(x)) (4)

Here MSE is the Mean Squared Error loss over the two feature vectors
produced by the model. The Logit Matching loss Ln seeks to minimize the
prediction logits, which directly impact the outcomes of subsequent classification
tasks. Finally, the total can be written as:

Ltotal = Ln + λ · Lg (5)
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This generative model can be shared securely, allowing hospitals to enhance their
resources without compromising privacy.

4 Experimental Analysis

4.1 Datasets

Our evaluations were performed using the Alzheimer’s Disease (AD) [31] and
the International Skin Imaging Collaboration (ISIC) 2019 dataset [32]. The
Alzheimer’s Disease dataset is a collection of MRI images. The images are clas-
sified into four distinct categories: Mild Demented, Moderate Demented, Non-
Demented, and Very Mild Demented. It has 5121 train images and 1279 test
images.

The ISIC 2019 dataset comprises 20,264 train images and 5,067 test images
available for the classification of dermoscopic images among nine different diag-
nostic categories: Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic
keratosis Benign keratosis (solar lentigo / seborrheic keratosis/lichen planus-like
keratosis), Dermatofibroma, Vascular lesion, Squamous cell carcinoma and none
of the above.

4.2 Implementation Details

Experimental Setup The training for the generator occurs in two phases (refer
to Fig. 1). In the first phase, we train the attention-based generator.The default
epoch size is set to 150. The momentum for the ADAM optimizer is set to 0.9.
The learning rate for MedSynth generator is set to 0.0001 while for the ViT in
the second phase is set to 0.01. The batch size B is kept at 32 to avoid memory
overflow. The implementation utilizes the PyTorch framework and is run on 4
Nvidia V100 GPUs.

Performance Assessment and Metrics To assess the effectiveness of the
MedSynth, we select a pre-trained ViT as the backbone for the downstream clas-
sification task. We first fine-tune this ViT using LoRa on the condensed datasets
obtained with MedSynth and the baseline methods, utilizing a learning rate of
0.01, and a batch size of 32. Subsequently, we evaluate and report the resulting
performance in terms of the area under the Receiver Operating Characteristic
curve (AUC) and accuracy.

4.3 Comparisons with State-Of-The-Art

In Table 1, we present a comparison of our method results with other state-of-the-
art distribution-based and GAN-based condensation methods. We compare our
results with DiM [20] that uses vanilla conditional GAN. For the other methods, a
ResNet18 architecture is used, whereas our work utilizes ViT-base16 with LoRA
as described in [29, 30]. Both the architectures are pre-trained on ImageNet. The
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experimental findings across the ISIC 2019 and Alzheimer datasets demonstrate
that MedSynth outperforms baseline methods, reducing the dataset size by 95%
while maintaining a close approximation of 96% of the original classification
performance in terms of AUC on ISIC 2019 and Alzheimer datasets.

We believe two major factors contribute to this result: 1) The presence of
residual attention blocks in the generator, aiding in capturing long-range depen-
dencies, thus facilitating effective dataset condensation into the generator. 2)
ViT’s self-attention mechanism enables the model to capture global interactions
among all components of the input image, coupled with stronger generalization
ability through pre-trained weights, further improves the quality of the generated
condensed datasets.

We compare our method with non-condensation methods, specifically using
deep convolutional GAN (DCGAN) [33]. We achieved a performance improve-
ment of about 7% on the Alzheimer dataset and about 3% on the ISIC 2019
dataset compared with DCGAN.

We consider the condensation ratio which is the ratio of the condensed dataset
size to the whole original training dataset size as a metric to measure the size
of the synthetic dataset required to achieve a similar performance on the whole
original dataset. In comparison to training on the entire dataset, using only 50
condensed images per class of Alzheimer’s and ISIC 2019 synthetic data resulted
in approximately 96% of the original classification performance. Furthermore, a
dataset comprising 25,331 skin lesion (ISIC) images typically demands around
10 GB of storage. In contrast, the generative model derived from it only re-
quires about 524 MB, reducing the communication cost as well as the storage
cost by a factor of 20. This illustrates how a generative model sharing can im-
prove efficiency in healthcare settings, enhancing data portability, sharing, and
distribution without excessively burdening the backbone network and ensuring
privacy protection.

4.4 Generalization Ability Comparison

We also assess the generalization capability of our approach across various deep
networks, including ConvNet, ResNet18, and DenseNet, and compare the per-
formance with the DiM method. The findings are shown in Fig. 2. AUC scores
for various models trained on the condensed Alzheimer’s dataset with images per
class = 50 are compared. Our method demonstrates outstanding generalization
performance across various architectures. This highlights that the condensed im-
ages produced by MedSynth can be utilized to train different networks, making
it easier for users to select a model as required by their application.

4.5 Membership Inference Attack Analysis

We evaluate MedSynth’s resiliency against the MIA attack. We generate the
white-box and black-box attacks based on the threat model proposed in [34]. For
both, the attacker training set consists of a random 10% of the original dataset
(ISIC/Alzheimer) with synthetic fake samples as non-members. In the white box
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Table 1. Performance Evaluation with varying images per class (IPC) on ISIC 2019
and Alzheimer datasets.

Method IPC

Dataset
Alzheimer’s ISIC 2019

Cond
Ratio%

AUC
Score Accuracy Cond

Ratio%
AUC
Score Accuracy

DM [14] 50 0.98 65.90 79.34 0.27 77.90 41.24
100 1.95 71.73 74.07 0.49 80.65 44.46

IT-GAN 50 0.98 78.84 79.54 0.27 77.24 77.62
100 1.95 82.11 83.48 0.49 80.53 81.03

DiM 50 0.98 89.35 89.46 0.27 81.87 82.33
100 1.95 90.28 91.13 0.49 82.94 83.25

MedSynth 50 0.98 94.90 95.58 0.27 83.12 85.54
100 1.95 96.27 97.11 0.49 84.93 87.22

DCGAN - 90.07 91.18 - 82.57 84.92
Original Dataset - 97.19 98.83 - 86.19 88.95

Fig. 2. Generalization ability com-
parison to DiM.

Fig. 3. Membership Inference At-
tack -Accuracy on the Generator

attack, knowing the target GAN architecture, the attacker inputs the training set
to target GAN’s discriminator, extracts and sorts the prediction probabilities and
uses the highest probabilities to predict the training set members. In the black-
box attack, without knowing the target GAN architecture, the attacker first
trains a local GAN using the target GAN samples and carry out the steps typical
of a white-box attack. The attack’s accuracy is determined by the percentage of
correctly identified images from the training set. Lower attack accuracy, below
random guessing, indicates increased model security against MIA attacks. We
compare the accuracy of both scenarios to a baseline corresponding to random
guesses made by a third party on the membership of samples in the dataset. As
shown in Fig. 3, we see the accuracy for both scenarios lies under the baseline,
proving the generator is safe against MIA. This happens because the generator is
distilled with knowledge about a condensed version of the dataset, which makes
it difficult to reverse-engineer individual samples from the original dataset.
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5 Conclusion

In this work, we proposed a novel generative model-based condensation tech-
nique to improve the high-resolution medical dataset’s condensation process us-
ing an attention-based generator combined with ViT-based feature refinement.
Incorporating DC with specialized GAN architectures for medical images and
attention-based foundation models is more effective in condensing medical im-
ages. We evaluated the effectiveness of our proposed approach on several health-
care datasets and achieved an AUC score similar to the original dataset. We
also looked at how these generative models are safe from membership inference
attacks, making them safe to use in the medical domain. By sharing the genera-
tive models instead of the entire raw images, it lowers the amount of storage and
bandwidth needed for data storage and transfer. Our evaluation shows that the
condensed medical datasets/generative models obtained with our method could
be more securely and efficiently shared among healthcare facilities.
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