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Abstract. Neonatal face detection is the prerequisite for face-based intelligent
medical applications. Nevertheless, it has been found that this area has received
minimal attention in existing research. The paucity of open-source, large-scale
datasets significantly constrains current studies, which are further compounded
by issues such as large-scale occlusions, class imbalance, and precise localiza-
tion requirements. This work aims to address these challenges from both data
and methodological perspectives. We constructed the first open-source face de-
tection dataset for neonates, involving images from 1,000 neonates in the neona-
tal wards. Utilizing this dataset and adopting NICUface-RF as the baseline, we
introduce two novel modules. The hierarchical contextual classification aims to
improve the positive/negative anchor ratios and alleviate large-scale occlusions.
Concurrently, the DIoU-aware NMS is designed to preserve bounding boxes of
superior localization quality by employing predicted DIoUs as the ranking cri-
terion in NMS procedures. Experimental results illustrate the superiority of our
method. The dataset and code is available at https://github.com/neonatal-pain.

Keywords: Neonatal Face detection · Neonatal dataset · Neonatal care.

1 Introduction

In recent years, the advancement of Artificial Intelligence (AI) in medicine has spurred
the development of numerous neonatal intelligent care, monitoring, and adjunctive diag-
nostic applications. These innovations include non-invasive pain assessment[25], face-
based real-time monitoring of physiological signals (e.g., respiratory rate[11]) and be-
havioral states (e.g., sleep state [1]), and the early detection of conditions such as jaun-
dice [16]. The effectiveness of these applications relying on neonatal face detection. The
accuracy of facial detection methods, especially in video surveillance contexts, is cru-
cial for early disease diagnosis and immediate medical intervention. Any shortcomings



Fig. 1: (a) The Precision-Recall curve of baseline on the NFD dataset; (b) Localization accuracy
on the NFD dataset; (c) Number of positives and negative anchors on the NFD dataset.

or mistakes in detection can delay diagnosis and worsen health outcomes. Therefore,
improving facial detection accuracy is essential for the performance and reliability of
face-based intelligent medical systems, bearing significant clinical significance

However, we found that the field of neonatal face detection has been notably un-
derexplored. In terms of datasets, there is a lack of open-source neonatal face detection
datasets; in terms of method, existing studies [17,7] have not considered the bottlenecks
of neonatal face detection in complex ward scenarios and proposed the targeted design.
They just adapted designs intended for adult face detection.

To this end, with the approval of the Ethics Committee (anonymous), we built the
first open-source Neonatal Face Detection (NFD) dataset. This dataset contains 5000
images (5 images per neonate). After the data collection, data annotation experts first
conducted the annotation process, which was reviewed medical experts specialized in
neonatal care.

We adopted the state-of-the-art (SOTA) neonatal face detector, NICUface-RF [7],
as our baseline. Based on its experimental results, we found that NICUface-RF does
not detect many actual faces. As shown in Figure 1.a, its highest recall rate barely
reaches 95%, leaving 5% of faces undetected. The Precision-Recall curve’s shape does
not extend sufficiently to the right or adequately steep. Such limitations in detecting all
potential faces are untenable for detectors that serve as the foundation for intelligent
medical systems. Missing critical physiological and health indicators, such as expres-
sions of pain or signs of respiratory distress, could severely compromise the precision
of medical assessments. In addition, as shown in Figure 1.b, the localization accuracy
of NICUface-RF requires enhancement, evidenced by the dramatic decline in Average
Precision (AP) with increasing Intersection over Union (IoU) thresholds.

Concerning the observed low recall rates, we attribute this phenomenon partially
to large-scale occlusions caused by hospital equipment or free-moving limbs. Further-
more, the standard practice of spacing neonatal beds widely apart reduces the number
of neonates in the image. This situation creates a substantial imbalance in the posi-
tive/negative anchor ratio (Figure 1.c) within the NICUface-RF model, predisposing it
towards a higher propensity for false negative predictions.



Building upon these insights, we propose the Hierarchical Contextual Classifica-
tion (HCC) Branch. In the first step, it filters out many negative anchors. This process
amplifies the positive/negative anchor ratio approximately 27-fold. In the second step,
taking inspiration from human visual perception—where individuals instinctively lever-
age contextual cues like body characteristics of the observed subject to identify faces in
situations where direct facial features are occluded—we propose to incorporate adjacent
contextual information into the relevant anchors.

Regarding the localization accuracy, NICUface-RF relies on classification confi-
dence to select bounding boxes during the Non-Maximum Suppression (NMS) process.
Nonetheless, a notable discrepancy exists between classification confidence and local-
ization accuracy, where a high classification probability does not inherently guarantee
precise localization. To mitigate this issue, we introduce a DIoU-Aware NMS (DAN)
strategy, employing the predicted Distance IoU (DIoU) as the ranking criterion within
the NMS procedure to prioritize the retention of bounding boxes exhibiting superior
localization quality. The experimental results show that our proposed modules enhance
both the recall efficiency and the accuracy of localization beyond the baseline. We also
quantitatively analyze the impact of our method on downstream facial analysis task.

2 Related work

2.1 Neonatal face detection

Dataset: DOSSO et al. [7] built the CHEO dataset, which includes data from 33
neonates. However, the CHEO dataset remains inaccessible to the public. Furthermore,
they annotated two additional datasets: the COPE dataset [3,2] and NBHR dataset [10].
Despite their contributions, the images within these datasets are cropped, failing to meet
the requirements for detecting neonatal faces in unconstrained environments. Olmi et
al. [17] developed a neonatal face detection dataset comprising 42 full-term newborns,
yet this dataset is also unavailable. Method: DOSSO et al. [7] employed RetinaFace
[5] and YOLO5Face [18] without introducing method improvements. Similarly, Olmi
et al. [17] utilized the ACF [6] object detector without proposing improvements.

2.2 Adult face detection

Face detection, a specialized domain within object detection, commonly utilizes archi-
tectures originally developed for generic object detection tasks. The methods employed
in adult face detection can be categorized based on their architectural foundations, in-
cluding [21,15] based on Faster R-CNN [19], [26] based on R-FCN[4], [22,12] based
on SSD [14], [24,23,28,5] based on RetinaNet [13]. Our method also adopts the Reti-
naNet framework. We propose the integration of contextual information to address the
challenge of large-scale occlusions in facial detection. Current research in adult facial
detection lacks solutions that can handle large-scale occlusions and alleviate class im-
balance in the classification head.



Fig. 2: The pipeline of our method.

3 NFD Dataset

3.1 Challenges

To develop a neonatal face detection dataset suitable for real-world applications and
complex clinical settings, we navigated multiple challenges: adhering to ethical and
privacy standards in image collection, acquiring a diverse set of high-quality images on
a large scale, and ensuring accurate, consistent annotation, which demands specialized
expertise.

3.2 Data Collection Protocol

This study was approved by the Ethics committee. Guardians of potential participants
were informed about the objectives and methodologies of the study. Written consent
was secured from the parents of all enrolled neonates. The study involved 1000 neonates
with gestational ages ranging from 24 gestational weeks (GW) 6 days to 38 GW 5 days,
with a mean of 32 GW 2.1 days. The collected images cover complex facial poses,
diverse facial occlusions, differentlighting conditions, diverse clinical procedures, and
different camera views.

3.3 Labels and Dataset Division

To ensure the reliability of the annotations, trained data annotators initially performed
the task, which was subsequently reviewed and refined by specialists in neonatal care.
The bounding boxes were delineated to encompass the area from the forehead to the
chin and from one ear to the other. The dataset was stratified into training, validation,
and test sets, adhering to a distribution ratio of 6:1:3, a process that maintains patient
exclusivity.

4 Method

The pipeline of our method is presented in Figure 2. The baseline is a single-stage
anchor-based face detector. It utilizes feature pyramid (P2 to P6), where P2 to P5 are



derived from the corresponding outputs of the backbone network (C2 to C5) through
top-down and lateral connections, while P6 is generated through a 3 × 3 convolution
applied to C5 with a stride of 2. Backbone (C1 to C5) is based on a ResNet-50 [9]
network, and P6 is initialized using the Xavier method [8].

For each anchor, the classification branch ascertains the presence of an object at the
anchor’s location. Upon identifying an anchor as positive, the regression branch adjusts
the anchor box’s coordinates to more accurately align with the ground truth location.

4.1 Hierarchical Contextual Classification Branch

First Step——Handling Class Imbalance In the context of neonatal face detection,
the classification branch of NICUface-RF encounters a class imbalance issue. For ex-
ample, at an input resolution of 640×640 and employing three types of anchors in our
implementation, the total anchor count escalates to 102,300, with merely a few dozen
or even fewer being positive anchors. Therefore, we propose to perform hierarchical
classification to initially filter out some of the negative anchors based on a predeter-
mined confidence threshold θ. This can narrow down the search space for the second
step improve the positive/negative anchor ratio.

Moreover, hierarchical classification is selectively applied across different levels
of the feature pyramid. Given the large size and limited quantity of anchors at higher
levels (P5 and P6), the prevalence of negative samples is comparatively low, render-
ing minimal benefits from hierarchical classification at these levels. Conversely, at the
three lower pyramid levels (P2, P3, and P4), which account for the majority of an-
chors (98.5%) and feature smaller anchor sizes, a hierarchical classification process is
implemented. This design is empirically validated by experimental results. As shown
in Figure 1.c, implementing hierarchical classification enhances the positive/negative
anchor ratio (about 27-fold).

Second Step——Context-Driven False Negative Mitigation We found that by con-
sidering the contextual information surrounding the face, such as body, the presence
and location of the face in the image can be better understood, especially when the face
is not sufficiently visible due to occlusion. Inspired by this, we propose a context-driven
module that encodes adjacent contextual information into relevant anchors.

Concretely, we obtain a set of filtered anchors after the first step. Following this,
we utilize the positions of these filtered anchors to create two attention feature maps.
Within each attention feature map, the locations of filtered anchors and their adjacent
neighbor information are designated with a value of 1, with all other values set to 0.
The neighbor information, centered around the target anchor point, encompasses the
immediate M×M area, where M is configured as either 3 or 5 to derive varied neighbor
information. We then ascertain the two neighbor context information by conducting a
dot product operation between the backbone feature maps and the two attention feature
maps. This procedure aims to explicitly generate more context information relevant to
the filtered anchors. Then, we encode the two context information into pyramid fea-
ture maps via an element-wise summation. The resultant combined feature map is then
inputted into the classifier and trained according to Equation 1.



Loss The loss function for HCC is as follows:
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where N1 and N2 denote the number of anchors processed during the first and second
steps, respectively, while Ω and Φ represent the sets of anchors at these steps. F 1 and
F 2 signify the sigmoid focal loss applied to the classifiers in the first and second steps,
respectively. The label y for each anchor is determined by an anchor matching strategy
[19]. The weight γ aims to balance the loss between two classifiers. f1,2

c represent the
output of two classifier. The dynamic label, y′, is obtained through the following proce-
dure: At each training iteration, we initially mask the positions of false-negative anchors
and true-negative anchors based on the classification scores from the first-step classifier
at the end of forward propagation. Subsequently, the positions of false-negative anchors
are labeled as positive samples, those of true-negative anchors as negative samples, and
the positions of the remaining anchors are treated as ignore samples.

4.2 DIoU-aware NMS

IoU’s limitation lies in its focus solely on the overlap between bounding boxes, ignoring
their precise positions. Consequently, two predictions with identical IoU scores can vary
significantly in proximity to the true object. DIoU addresses this by incorporating the
center distance between predicted and actual bounding boxes, offering a more accurate
reflection of their positional accuracy. Thus, adopting DIoU over traditional IoU in
NMS evaluation promises more accurate and rational detection outcomes.

Concretely, we propose a simple DIoU prediction branch to predict the DIoU value
between the detected box and the corresponding ground-truth object. DIoU prediction
branch is a parallel branch with the regression branch and consists of a 3 × 3 convolu-
tion layer, followed by a sigmoid function. At the inference phase, the final detection
confidence is computed by the following equation,

score = pαi D
(1−α)
i , (2)

where pi and D are the classification score and predicted DIoU of i-th detected box,
and α ∈ [0, 1] is a hyperparameter. At the training phase, the binary cross-entropy loss
(BCE) is adopted for the DIoU prediction loss:

LDloU =
1
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)
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where Di represents the predicted DIoU for each positive anchor and D̂i is the ground
truth. D̂i is computed as follows:

D̂i = 1− IoU +
ρ2 (b,bgt)

c2
, (4)

where b and bgt denote the central points of the predicted box and ground-truth box,
ρ(·) is the Euclidean distance, and c is the diagonal length of the smallest enclosing box
covering the two boxes.



Fig. 3: (a) Precision-recall curves on NFD dataset; (b) Face detection results, where ‘green’ rep-
resents ground truth and ‘red’ represents predictions.

5 Experiments

Table 1: Inference time for input size of
640×640.

Method Device Inference time (ms)
Baseline GPU 1 32.1

Ours GPU 1 32.3

Table 2: Ablation studies on the NFD dataset.

Setting AP(%)
Baseline: NICUface-RF [7] 89.5
a. + HCC 90.7
b. + DAN 92.6
c. + HCC + DAN 93.5

5.1 Implementation Details

The details of the feature pyramid, stride size, and anchor setting can be found in [5].
All the methods involved in our study were pre-trained on The WIDER FACE dataset
[20] according to the original settings and then fine-tuned on the NFD dataset. We use
SGD optimizer to train our model with 20 epochs (momentum at 0.9, weight decay
at 5e-4, batch size of 16). The learning rate starts from 1e-3, rising to 1e-2 at the 5th
epochs, then divided by 10 at the 10th and 15th epochs. Following [7], anchors were
assigned to objects when the IoU surpassed 0.45 and to the background if the IoU was
under 0.3. We empirically set θ to 0.9 and γ to 1. Training data augmentation was
achieved through random horizontal flips and photometric color distortions.

Table 3: The AP (%) achieved by applying
the negative anchor filtering to each pyra-
mid level. P2 means that we only apply this
operation to the P2 level.

Method - P2 P3 P4 P5 P6

Baseline 89.5 90.0 89.9 89.7 89.5 89.4

Table 4: Influence of M settings in the HCC
module on results.

Method M in HCC module AP(%)
Ours 3 93.0
Ours 5 93.2
Ours 3 and 5 93.5

1 NVIDIA Tesla P40



Table 5: NMS strategy comparison, where ‘0.5’
denotes the IOU, and so on.

NMS Setting AP0.5(%) AP0.6(%) AP0.7(%) AP0.8(%)
IOU-aware 93.5 85.0 70.6 45.3

DIOU-aware 93.5 85.2 71.4 46.6

Table 6: The impact of neonatal face detection
method on downstream task.

Face detection setting Pain assessment Accuracy(%)
Baseline RCA[27] 78

Ours RCA[27] 88

5.2 Comparison With State-of-the-Art Methods

We present the precision-recall curves for our method, the baseline, and YOLO5Face
[18] in Figure 3.a. we can see that our method outperforms the others, particularly in
terms of recall rate. In Figure 1.b, we provide a comparison of the AP between our
method and the baseline at various IoU thresholds. We can see that as the IoU threshold
increases, our method’s lead over the baseline widens, proving our method’s effective
enhancement of localization accuracy. In Figure 3.b, we also present several results of
neonatal face detection to qualitatively illustrate the improvements our method brings in
mitigating false negatives and enhancing localization accuracy. Finally, a comparison of
inference times between our method and the baseline is provided in Table 1, indicating
that our method introduces negligible additional time consumption, essentially meeting
the requirements for real-time processing.

5.3 Ablation Study

Hierarchical Contextual Classification The precision-recall curve in Figure 3.a and
the results in Table 4 prove the effectiveness of our proposed HCC. In addition, the
experimental results of adding the first-step classification on each pyramid level are
persented in Table 3. Consistent with our intuition, two-step classification on the three
low-level fearure maps contributes to improved performance, while it is ineffective on
the high-level fearure maps. In addition, we conducted sensitivity analyses on the setting
of M in Table 4, which verified the reasonableness of our setting (3 and 5).

DIoU-aware NMS The precision-recall curve presented in Figure 3.a, along with the
the results in Table 4, substantiate the efficacy of the proposed DAN. In addition, we
conducted a further comparison between our method and IoU-aware NMS. As shown in
Table 5, we can observe that our method delivers a performance enhancement at higher
IoU thresholds.

5.4 Impact on downstream task

We investigate how our method enhances neonatal facial analysis, focusing on popular
facial pain assessment. A pre-trained model [27] for facial pain assessment was em-
ployed to analyze pain levels in video frames, automatically selecting the highest value
for each segment as the prediction. We evaluated our approach on 50 one-minute videos
of neonates undergoing fingertip blood sampling in the neonatal intensive care unit. As
shown in Table 6, our method improved pain assessment accuracy, attributed to a higher
recall rate than the baseline, ensuring critical pain-indicative frames were not missed,
thereby reducing inaccuracies in pain classification.



6 Conclusion

In this work, we build the first face-detection dataset for neonates and propose a ro-
bust face-detection method for neonates. The proposed method contains a hierarchical
contextual classification branch to address the class imbalance and large-scale occlu-
sion alongside a DIoU-aware NMS to rectify issues of inaccurate localization. Further-
more, we quantitatively analyze the advantageous impact of our method on downstream
neonatal pain assessment. We plan to evaluate the impact of neonatal face detection for
more downstream tasks.
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