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Abstract. Tumor Spread Through Air Spaces (STAS), identified as a
mechanism of invasion, has been substantiated by multiple studies to be
associated with lower survival rates, underscoring its significant prognos-
tic implications. In clinical practice, pathological diagnosis is regarded
as the gold standard for STAS examination. Nonetheless, manual STAS
diagnosis is characterized by labor-intensive and time-consuming pro-
cesses, which are susceptible to misdiagnosis. In this paper, we attempt
for the first time to identify the underlying features from histopathologi-
cal images for the automatic prediction of STAS. Existing deep learning-
based methods usually produce undesirable predictive performance with
poor interpretability for this task, as they fail to identify small tumor
cells spread around the main tumor and their complex correlations. To
address these issues, we propose a novel Ollivier-Ricci Curvature-based
Graph model for STAS prediction (ORCGT), which utilizes the infor-
mation from the major tumor margin to improve both the accuracy and
interpretability. The model first extracts the major tumor margin by a
tumor density map with minimal and coarse annotations, which enhances
the visibility of small tumor regions to the model. Then, we develop a
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Heatmap ROI(a) WSI Thumbnail (b) STAS (c) Heatmap (d) (e) Our Ring Map (f) Ring Map ROI

Fig. 1. (a)-(b): The STAS annotation. The red line in WSI is the annotation of major
tumor margin and the green circle (very small) is the annotations of STAS; (c)-(d):
Attention heatmap from ABMIL [8] cannot highlight the critical tumor margin region;
and (e)-(f): The extracted ring map of ORCGT.

Pool-Refined Ollivier-Ricci Curvature-based module to enable complex
interactions between patches regardless of long distances and reduce the
negative impact of the over-squashing phenomenon among patches linked
by negative curvature edges. Extensive experiments conducted on our
collected dataset demonstrate the effectiveness and interpretability of
the proposed approach for predicting lung STAS. Our code is available
at https://github.com/zhengwang9/ORCGT.
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1 Introduction

Lung cancer is one of the most common malignant tumors worldwide with high
mortality and incidence [24], causing increasing emergency in studying the mech-
anism of lung cancer metastasis. In clinical contexts, Spread Through Air Spaces
(STAS) is characterized by micropapillary clusters, solid nests, or individual cells
extending within air spaces beyond the boundary of the primary tumor, as de-
picted in Fig. 1(a) and (b) [7]. STAS as an invasion pattern of pulmonary adeno-
carcinomas (ADC), is confirmed to be highly correlated to the cancer recurrence
rate and the survival of lung ADC patients by statistical analysis [13,3]. Hence,
precise identification of STAS plays a crucial role in aiding clinicians in postoper-
ative treatment decisions for patients. Unfortunately, the manual interpretation
of WSI is a tedious and time-consuming process with a high risk of misdiagnosis,
even with an experienced pathologist [21]. While computer-assisted WSI evalu-
ation could significantly enhance the accuracy, efficiency, and reproducibility of
STAS detection, it has only received little attention in the field.

Recently, deep learning techniques have exhibited remarkable performance in
WSI analysis [14,10,17]. Several graph-based models have been adapted to model
the interrelation among patches and capture global information [2], achieving
excellent results in survival analysis tasks. However, we empirically observe
that directly applying existing multiple-instance learning-based WSI analysis
approaches leads to suboptimal and uninterpretable predictive performance for
STAS detection. This could be attributed to the minute size of STAS relative to
the main tumor region and its proximity to the main tumor area; see Fig. 1(b).

https://github.com/zhengwang9/ORCGT
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As shown in Fig. 1(a)-(d), the state-of-the-art method ABMIL [8] pays the most
attention to the main tumor region rather than the small tumor regions (i.e.
STAS), which neglects the contribution of small tumor regions to the label and
hinders modeling the complex interaction among different tumor regions.

To tackle these issues, we propose a novel Oliver-Ricci Curvature-based Graph
Model for Lung STAS Prediction (ORCGT). Our approach consists of two inno-
vative modules: Major Tumor Margin Extraction and Ollivier-Ricci Curvature-
based Graph Network. In the first module, we restrict the model’s input to the
ring-like invasive region surrounding the major tumor area (i.e. major tumor
margin) (e.g., Fig. 1(e)), which significantly increases the visibility of each small
tumor region to the model. In the second module, we use a graph neural net-
work to model complex interactions of patches in the ring-like invasive region
and thus enhance the detection of STAS. However, interactions between patches
in the graph are hindered by both the long distances among patches and the
over-squashing phenomenon during message passing. For the long-distance issue,
a hierarchical graph pooling strategy is used to encourage long-distance patch
interactions by dynamically shrinking the graph scale. For the over-squashing
issue, we introduce Oliver-Ricci Curvature (ORC) to mitigate the distortion
of interactions between patches. Concretely, since the patch interactions will
be severely distorted between nodes with edges of negative curvature and such
edges commonly exist in the constructed graph from each WSI (e.g., Fig 4(d)),
the ORC-based aggregation helps restore interactions by adaptively adjusting
aggregation weights based on the curvature values.

Our contributions can be summarized as follows: (a) We develop a novel
ORCGT framework to predict STAS in WSI that only needs limited coarse an-
notations. To the best of our knowledge, our work is the first one using deep
learning to predict STAS in histological images. (b) We propose to restrict the
model’s attention only to the ring-like major tumor margin, leading to sound in-
terpretability of model predictions on each WSI. (c) We enhance the interaction
among patches by respectively using the ORC to handle distorted interactions
and pooling layers to model long-distance interactions, whose effectiveness is
carefully validated in our ablation study. (d) Extensive experiments on our col-
lected dataset show the advantage of our proposed framework in WSI-based
STAS prediction.

2 Methodology

Fig. 2 illustrates the framework of our proposed ORCGT, composed of two
modules: Major Tumor Margin Extraction Module and Ollivier-Ricci Curvature-
based Graph Module. Firstly, our proposed Tumor Density Map segmentation
module is employed to delineate the major tumor margin. Subsequently, plaques
within this margin contribute to graph construction, using their features and
coordinates. Additionally, the ORC is integrated to capture the manifold char-
acteristics of the graph. A Pool-Refined Curvature-based graph layer (PRCG) is
introduced to improve the prediction of STAS.
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Fig. 2. Overview of our proposed ORCGT, which consists of two modules: Major
Tumor Margin Extraction Module and Ollivier-Ricci Curvature-based Graph Module.

2.1 Major Tumor Margin Extraction

We initiate our approach by delineating clinically significant regions along the
major tumor boundary within WSI. Initially, we employ a pretrained HoVer-
Net[6] to classify tumor patches based on their cell count. To refine the delin-
eation of the major tumor boundary, we identify patches as false positives if
more than six of their 8-adjacent patches exhibit negative classification results,
subsequently excluding them from the major tumor region. Subsequently, we
organize the classification results of all patches within the WSI based on their
coordinates, forming a slide-level tumor density map. This density map serves
as input for training a tumor region segmentation network to derive the mask
for the major tumor region. Finally, adhering to the pathological definition of
STAS [7], we identified critical regions: the region of the major tumor margin
containing STAS by extending the boundary of the major tumor region inward
by n1 patches and outward by n2 patches.

2.2 Ollivier-Ricci Curvature-based Graph Construction

Specifically, after the extraction of the major tumor margin, patches within the
major tumor margin are treated as nodes V in the ring graph G=(V,E). The
node features V =(X1, X2, . . . , Xn) ∈Rn×d are obtained by pretrained CtransPath
model [23]. n is the number of extracted patches and d is the dimension of fea-
tures. Then the edges are constructed by approximate k nearest neighbor through
Hierarchical NSW [12]. All edges E ={eij} are undirected. To model the trans-
mission of dependencies between nodes, we further calculate the ORC for all
edges of G. The ORC of edge eij between node i and node j can be formulated
as:Rij = 1 − WD(Pi,Pj)

dist(i,j)
, where WD(Pi, Pj) means the Wasserstein distance [15]

between two probability distributions Pi and Pj of node i and node j. dist(·, ·)
is the Euclidean distance. The probability distribution of node i is defined as
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Px(xi) =


α if xi = x

(1− α)/d(x) if xi ∈ N (x)

0 otherwise
, where N (x) the set of adjacent nodes

of node x and d(·) indicates the degree of nodes, α is a hyperparameter of the
probability distribution. Then we can get the Curvature C = {Rij} of Graph G.
Finally, the curvature graph Gc = (V,E,C) is constructed for each WSI.

2.3 Ollivier-Ricci Curvature-based Graph Network

We propose a novel Ollivier-Ricci Curvature-based Graph Network for predicting
STAS status, with a specific focus on the Ring Map. This network addresses the
presence of bottleneck regions, which often lead to over-squashing and distorted
interactions among patches.

Pool-Refined Curvature-based Graph Layer. Due to the fact that negative
ORC typically indicates over-squashing phenomena [22]. We construct an edge
weight function that is inversely related to negative ORC. Therefore, we form
the curvature vector following [19], formally:

For(ij) =

(
1 + e−Rij

2
,
1 + e−2×Rij

2
, . . . ,

1 + e−k×Rij

2

)T

, (1)

where Rij represents the ORC of the edge between node i and node j. Then the
edge’s curve-based weight can be obtained through Worc(ij) = WTFor(ij) + b.
This curvature weight Worc(ij) is incorporated into the original GCN to form
the Curvature-based Graph layer Hc, in which the node features of the layer l
can be computed by the following formula:

Xl
x = σ

 ∑
y∈N (x)∪{x}

1√
d(x)

√
d(y)

WorcWGCNX
l−1
y

 , (2)

X l
x denotes the feature of node x after l-th layer, σ the activation function. Then

an Edge Pooling Layer [4] was adopted to downsize Gc, while maintaining its
pivotal structural and feature information, which also assists local GCN models
in learning long-distance dependencies more quickly and facilitates the recogni-
tion of the tiny spread tumor regions. Subsequently, we apply a standard GCN
layer H to further refine the node features, followed by an additional pooling
operation for enhanced feature aggregation.

Finally, the proposed whole Pool-Refined Curvature-based Graph (PRCG)
convolution layer denoted GPRCG is formulated as:

Gl(V l, El, Cl) = GPRCG(G
l−1(V l−1, El−1, Cl−1))

= (Pe(H(Pe(Hc(G
l−1(V l−1, El−1, Cl−1)))),

(3)

where Gl(V l, El, Cl) represents the Graph after the l-th layer. Our Ollivier-
Ricci Curvature-based Graph Network is made up of multiple PRCG layers.
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After obtaining the aggregated graph yield by our PRCG layers, we learn a
global attention-based pooling layer rg to adaptively compute a weighted sum
of all node features V l = (X l

1, X
l
2, . . . , X

l
n) obtained from Gl(V l, El, Cl) to be

aggregated into the slide-level feature. Finally, an MLP classifier is used to get
the predictive logits of STAS.

Training Strategy. Due to the class imbalance present in the dataset, we
employed two loss functions to supervise the learning process of our model:
weighted cross-entropy loss LC̃E and supervised contrastive loss LCL:

LC̃E = − 1

M

M∑
i=1

wi(yi ln(ŷi) + (1− yi) ln(1− ŷi)),

LCL = −
M∑
i=1

1

Myi − 1

M∑
j=1

li̸=j lyi=yj ln

[
e(si,j/t)

e(si,j/t) +
∑M

k=1 lyi ̸=yke
(si,k/t)

]
,

(4)

where M denotes the mini-batch size, yi and yj represent the labels of the anchor
sample i and sample j, respectively. Myi

denotes the count of samples with label
yi in a mini-batch. ŷi is the predicted probability, wi is the weight assigned to
the ith sample. li̸=j is a similar indicator function. si,j is the cosine similarity
between the sample i and j. Considering λC̃E and λCL as loss weights, the overall
loss function is defined as L = λC̃E · LC̃E + λCL · LCL.

3 Experiments

Datasets Our dataset is collected containing 284 pathologically confirmed lung
adenocarcinoma H&E-stained WSIs, of which 208 are classified as negative (with-
out STAS), and 76 as positive (with STAS). There are 23 slides annotated with
rough major tumor boundary only for the training of major tumor region seg-
mentation network. We use five-fold cross-validation for evaluation and further
split the training set into two groups randomly: training set (75%) and vali-
dation set (25%). We adopt 5 evaluation metrics, including the area under the
receiver operating characteristic curve (AUROC), the area under the precision-
recall curve (AUPRC), balanced accuracy (Acc) [1], as well as the F1 score
(F1STAS) and Recall (RecallSTAS) for the STAS category. The best model for
the validation set is used to evaluate the testing set.

Table 1. Performance comparison of STAS prediction using five-fold cross validation
on our collected dataset.

Method AUROC AUPRC Acc F1STAS RecallSTAS

CLAM-SB [11] 0.701 0.501 0.730 0.326 0.264
ABMIL [8] 0.712 0.508 0.732 0.340 0.276

TransMIL [18] 0.601 0.401 0.692 0.200 0.224
Exphormer [20] 0.615 0.392 0.608 0.388 0.488
PatchGCN [2] 0.708 0.501 0.700 0.422 0.500

ORCGT (Ours) 0.753 0.556 0.724 0.502 0.512
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Table 2. Ablation analysis on our collected dataset.

Method AUROC AUPRC Acc F1STAS RecallSTAS

ORCGT (Ours) 0.753 0.556 0.724 0.502 0.512
w/o Ring Map 0.730 0.474 0.720 0.502 0.528
w/o Curvature 0.738 0.538 0.740 0.494 0.514
w/o Pooling 0.692 0.521 0.684 0.484 0.584

w/o contrasive loss 0.714 0.500 0.728 0.438 0.420

Experimental Setup The proposed framework was implemented using Py-
Torch [16] and PyTorch Geometric [5] on a workstation equipped with 8 NVIDIA
GeForce RTX 3090 GPUs. All slides were partitioned into non-overlapping patches
of size 256px ×256px at a magnification of 20×. The feature dimension for each
patch extracted by CtransPath [23] is 1×768. Due to data imbalance, the weights
for the cross-entropy loss were adjusted to 0.35 for samples without STAS and
0.65 for those with STAS. The initial learning rate was set to 0.0002 with Adam
optimizer [9], and the batch size was fixed at 4 for 120 epochs. n1 and n2 are set
to 5 and 10 experimentally (see Section 2.1). The loss weights λ1 = λ2 = 1.

Comparison with Other Methods We first evaluated the five-fold cross vali-
dation experimental results of our proposed method with two groups of state-of-
the-art WSI analysis methods: (1) attention-based algorithms including: CLAM-
SB [11], ABMIL [8], TransMIL [18], and (2) graph-based algorithms including:
PatchGCN [2], Exphormer [20]. Table 1 shows the comparison results on our
dataset. In general, our method achieves an outstanding result in all five evalua-
tion metrics of predicting STAS. It can be found that our proposed method out-
performs all the compared algorithms with the best AUROC of 0.753, AUPRC
of 0.556, and RecallSTAS of 0.512. Compared to other algorithms, ORCGT im-
proves at least 4.8% in classification AUPRC, which is a particularly significant
metric in data imbalanced situations similar to ours.

In addition, we achieved better results in F1STAS and RecallSTAS which is
regarded with importance.

(a) WSI (b) ABMIL (d) ORCGT(Ours)(c) PatchGCN

Fig. 3. Attention heatmaps comparsion for variable methods: ABMIL, PatchGCN and
ORCGT. The red line in (a) WSI is the annotation of major tumor margin and the
green circle (very small) is the annotations of STAS.
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(c) Ring Map(a) WSI (b) Tumor Density Map (d) Negative Curvature

Fig. 4. Major Margin Extraction and Curvature Visualization. In (b), red points denote
the predicted major tumor region, blue points represent potential STAS patches, which
may be STAS or isolated cancer within the major tumor area patches, while green
points denote normal patches. In (c), the blue ring is the Ring Map.

Ablation Study To investigate the effects of four ORCGT key components,
we further conduct an ablation study. Table 2 reports the results. In first row,
we used all cropped patches in WSIs instead of the patches in Ring Maps; in the
second row, we replaced the PRCG with a normal graph convolution layer. The
third row removes all pool layers from our model. And the last row, we removed
the contrasive loss from our training strategy and only use the cross-entropy
loss. It’s worth noting that AUPRC has decreased by 8.2% with all patches,
demonstrating the importance of major tumor margin extraction. The results of
the ablation analysis demonstrate that all the modules employed in our study
effectively enhanced the predictive performance of the model to some degree.

Attention Map Visualization Fig. 3 depicts an H&E-stained WSI with STAS
annotations and its Ring Map, along with attention heatmaps generated by three
different methods: Fig. 3(b) ABMIL; Fig. 3(c) PatchGCN; Fig. 3(d) ORCGT
(Ours) with patches in the Ring Map. In addition to our proposed ORCGT,
these two models exhibit good experimental evaluation metrics. Therefore, we
choose to visualize the attention heatmaps of these two models to compare their
interpretability with our approach. The sample depicted in Fig. 3 exhibits the
presence of STAS and is accurately predicted by ORCGT. In the attention map,
it is evident that both ABMIL and PatchGCN fail to capture the relationship
between the patches of the main tumor area and STAS, whereas our ORCGT
successfully does so. In the attention heatmap generated by ORCGT, regions
with higher attention encompass the STAS areas.

Major Tumor Margin Extraction and Curvature-based Ring Map Vi-
sualization Fig. 4(b) illustrates reconstructed tumor density map color-coded
based on tumor types, the red areas selected through local tumor density appear
to align more closely with the contours of the main tumor region in the H&E slide
compared to the cancerous regions obtained directly from HoVer-Net [6]. Fig. 4
(c) presents the Ring Map prediction results, demonstrating relatively accurate
ring predictions that encompass the STAS region. Fig. 4 (d) shows that the edges
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of graphs with negative curvature, suggesting that emphasizing the inner region
of the circle helps to capture the long-distance relationship between the major
tumor margin and STAS and reduce distorted interactions across patches.

4 Conclusion

We propose a novel framework called the Oliver-Ricci Curvature-based Graph
Model for Lung STAS Prediction (ORCGT) with histological WSIs. Unlike exist-
ing methods that fail to capture STAS, our approach restricts the model’s input
to the ring-like invasive region surrounding the major tumor area and designed
a PRCG layer to simultaneously improve the detection of STAS and model com-
plex interactions among major tumor margin and STAS. Experimental results
demonstrate that our method achieves superior classification performance and
interpretability, with each module proving effective. This has significant impli-
cations for improving the efficiency of STAS diagnosis and reducing costs.
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