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Abstract. The release of nnU-Net marked a paradigm shift in 3D medi-
cal image segmentation, demonstrating that a properly configured U-Net
architecture could still achieve state-of-the-art results. Despite this, the
pursuit of novel architectures, and the respective claims of superior per-
formance over the U-Net baseline, continued. In this study, we demon-
strate that many of these recent claims fail to hold up when scrutinized
for common validation shortcomings, such as the use of inadequate base-
lines, insufficient datasets, and neglected computational resources. By
meticulously avoiding these pitfalls, we conduct a thorough and compre-
hensive benchmarking of current segmentation methods including CNN-
based, Transformer-based, and Mamba-based approaches. In contrast to
current beliefs, we find that the recipe for state-of-the-art performance
is 1) employing CNN-based U-Net models, including ResNet and Con-
vNeXt variants, 2) using the nnU-Net framework, and 3) scaling models
to modern hardware resources. These results indicate an ongoing inno-
vation bias towards novel architectures in the field and underscore the
need for more stringent validation standards in the quest for scientific
progress.
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1 Introduction

Medical image segmentation remains a highly active area of research, evidenced
by the U-Net architecture receiving over 20,000 citations in 2023 alone [29]. The
introduction of nnU-Net in 2018 was a pivotal moment, highlighting that careful
implementation and configuration of the architecture are more crucial for achiev-
ing state-of-the-art results than modifying the architecture itself [23,21]. Despite
this, the attraction of innovative architectures from the broader computer vi-
sion domain, such as Transformers [33] and Mamba [13], persists. Adaptations
of these cutting-edge designs to the medical imaging domain have emerged,
with claims of superior performance over the conventional CNN-based U-Net
[32,11,15,17,41,38,26,9,12,37,34].

In this paper, we critically examine these claims and find that the current
rapid adoption of new methods to the medical domain comes with a lack of
stringent validation. As a consequence, we observe that many recent claims of
methodological superiority do not hold when systematically tested in a compre-
hensive benchmark. This trend raises significant concerns, indicating a prevail-
ing attention bias in medical image segmentation towards novel architectures.
To overcome this bias and redirect the field towards meaningful methodological
progress, we call for a systemic change emphasizing rigorous validation practices.
Our study makes the following contributions:

1. We systematically identify validation pitfalls in the field and provide recom-
mendations for how to avoid them.

2. We conduct a large-scale benchmark under a thorough validation protocol
to scrutinize the performance of prevalent segmentation methods.

3. Based on this analysis, we identify key methodological components for med-
ical image segmentation as well as a set of suitable benchmarking datasets.

4. We release a series of updated standardized baselines for 3D medical seg-
mentation at https://github.com/MIC-DKFZ/nnUNet. These are based on
a residual encoder U-Net within the nnU-Net framework and tailored to
accommodate a spectrum of hardware capabilities ("M", "L", "XL").

2 Validation Pitfalls

In the following, we present a collection of predominant validation pitfalls in cur-
rent practice paired with recommendations on how to avoid them. In Section 4,
we underscore the critical need for this initiative by empirically demonstrating
how these pitfalls lead to unsupported claims of methodological superiority.

2.1 Baseline-related Pitfalls

Providing a fair and comprehensive comparison to existing work is essential for
scientific progress. Currently, we observe a lack of rigour in ensuring meaningful

https://github.com/MIC-DKFZ/nnUNet
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comparison.

P1: Coupling the claimed innovation with confounding performance

boosters: There are multiple ways to artificially boost a method’s performance,
obfuscating the real impact of the claimed innovation. One example is coupling
the claimed innovation with residual connections in the encoder while the base-
line uses a vanilla CNN encoder [26]. Another example is coupling the claimed
innovation with additional training data not used in baselines [16]. This is even
more critical, if the usage of additional data is not made transparent[3]. A related
pitfall is to couple the claimed innovation with self-supervised pretraining, while
the baselines train from scratch [32]. A third example is coupling the claimed in-
novation with larger hardware capabilities, i.e. comparing against baselines that
are not scaled to the same compute budget (VRAM usage and training time) [31].
Finally, sometimes claimed innovations are based solely on leaderboard results
where the method is coupled with 20-fold ensembling, while other leaderboard
entries do not use such costly performance boosters[32,16]. Recommendation

(R1): Meaningful validation entirely isolates the effect of the claimed innova-
tion by ensuring a fair comparison to baselines where the proposed method is
not coupled with confounding performance boosters.

P2: Lack of well-configured and standardized baselines: nnU-Net has
demonstrated that proper method configuration often impacts performance more
significantly than the architecture itself [21]. This suggests that claims of method-
ological superiority may be misleading if based on comparisons against an ill-
configured baseline (i.e. a manually configured U-Net [29] with nontranspar-
ent and potentially subpar hyperparameter optimization). Some methods, like
nnU-Net, address the "faulty baseline" problem by offering automatic, high-
quality, and thus standardized, configuration on new datasets. Despite this,
many studies continue to claim methodological superiority without benchmark-
ing against any such standardized baseline with a proven high-quality configura-
tion [38,37,34,12,9,11,40]. Beyond auto-configuration frameworks like nnU-Net,
it is almost impossible to ensure a high-quality configuration when including ex-
isting methods as baselines, because typically no instructions for adaptation to
new tasks are provided. This need for manual adjustments, even if equal hyper-
parameter tuning budget is allocated to all methods, is an error-prone process
that ultimately diminishes the relevance of results. Recommendation (R2):

Beyond the call for ensuring high-quality configuration of baselines, long-term
standardization in the field can only be achieved if newly proposed methods are
equipped with adaptation instructions, or ideally, are carefully integrated within
auto-configuration frameworks to inherit their capabilities.

2.2 Dataset-related Pitfalls

P3: Insufficient quantity and suitability of datasets: The nnU-Net study
contains experiments demonstrating 1) the vast diversity of biomedical datasets
and 2) the corresponding need of testing on a sufficient number and variety of
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datasets when making claims about general methodological advancements [21].
However, the median number of datasets employed in recent studies claiming su-
perior segmentation performance is three [32,16,18,28,17,26,38,20,31,41,37,12,9,11].
Though the number might seem unremarkable on its own, it becomes concerning
when considering the varying benchmarking suitability of popular datasets. For
instance, as we empirically analyse in Section 4, neither of the two datasets
BTCV [25] and BraTS [5,27,6], while being useful environments for solving
their respective clinical task, provide a reliable foundation for assessing general
methodological advancements. This is due to a high statistical variance (BTCV)
and a low systematic variance (BraTS). Despite this, numerous studies claim
methodological superiority while at least 50% of the benchmark is made up
by either BTCV [37,11,9] or BraTS [14,34,31,28,16]. Recommendation (R3):

Meaningful validation requires that utilized datasets are a suitable basis for
measuring the claimed methodological advancement. This may include sufficient
dataset quantity and diversity, as well as benchmarking suitability of individual
datasets, as assessed in our study in Section 4.

P4: Inconsistent reporting practices: Standardization of public leaderboard
submissions is limited, e.g. allowing varying strategies for ensembling, test time
augmentations and post-processing techniques. While perfectly serving the need
to demonstrate that a proposed method can push the state-of-the-art when
equipped with all bells and whistles, such non-standardized settings undermine
the ability to draw meaningful methodological conclusions. Consequently, re-
searchers often resort to custom train/test splits for controlled comparisons
against baselines, but these typically involve small test sets that introduce sub-
stantial result instability and question the significance of minor performance
gains [36,39,41]. Further, the practice of reporting selective results only for spe-
cific classes from datasets without justifiable reasons further compromises result
integrity [41,11,9,36,39]. Recommendation (R4): 5-fold cross-validation with
a rotating validation set improves reliability and often represents a pragmatic
solution. However, using the same dataset(s) for development and validation
bears the risk of implicit overfitting and a lack of generalizability. Thus, ideally,
differentiating between a pool of development datasets and an independent pool
of test datasets for cross-validation against baselines would offer a more reliable
assessment of method performance.

3 Systematic 3D Medical Segmentation Benchmark

Taking these pitfalls and recommendations into account, we revisit recently pro-
posed methods on basis of a systematic and comprehensive benchmark.

3.1 Compared Methods

We categorize methods into CNN-based, Transformer-based, and Mamba-based.
CNN-based: We include nnU-Net’s original configuration using a vanilla U-Net
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as well as a variant employing a U-Net with residual connections in the encoder
("nnU-Net ResEnc") which has been part of the official repository since 2019
[22]. In the spirit of avoiding benchmarking of unequal hardware settings in the
future (see P1), we introduce new nnU-Net ResEnc presets, which use nnU-Net’s
existing automatic adaptation of batch and patch sizes to target varying VRAM
budgets ("M", "L", "XL"). We further include MedNeXt, a transformer-inspired
CNN-modification using ConvNeXt blocks (we test size "L" with kernel sizes
"k3" and upkernel "k5") [31], and STU-Net, a series of scaled up U-Nets with in-
creasing parameter counts named "S"(mall), "B"(ase), "L"(arge), and "H"(uge)
[20]. Transformer-based: We test the SwinUNETR’s original version [32] as
well as version 2 [17], nnFormer [41], and CoTr, a hybrid architecture combin-
ing convolutional and transformer modules [37]. Mamba-based: We test the
recently proposed U-Mamba model [26] employing Mamba-layers either in the
U-Net encoder ("U-Mamba Enc"), or exclusively in the bottleneck ("U-Mamba
Bot"). We also include an ablation missing in the original publication using the
identical setting while switching off the mamba layers ("No-Mamba Base"). All
aforementioned methods were originally implemented in the nnU-Net framework
except SwinUNETR(V1+V2), which we integrate into the nnU-Net framework
due to incomplete configuration instructions (P2). Framework comparison:

In addition to comparing recent methods, we also benchmark nnU-Net against
a recent alternative framework: Auto3DSeg(Version 1.3.0)[1,28,18,32] is part of
the MONAI eco-system [10] and recently created a buzz at MICCAI 2023 by
winning several highly competitive challenges like KiTS2023, thereby position-
ing itself as an alternative to nnU-Net promising the same auto-configuration
functionality [1]. The framework is tested by means of three featured architec-
tures ("SegResNet" [28], "DiNTS" [18], "SwinUNETR" [32]).

In the spirit of R1 and R2, we employ a standardized scheme for hyperparame-
ter configuration by either 1) using the self-configuration abilities of methods if
available, 2) selecting the configuration closest to the respective dataset if mul-
tiple configurations were provided, 3) using the default configuration in case no
alternatives were provided or 4) where necessary, decreasing the learning rate
until convergence was achieved. All models are trained from scratch. The only
exception is SwinUNETR in the Auto3DSeg framework. Altering its default of
automatically loading pre-trained weights would have contradicted our hyper-
parameter configuration scheme. We also employed an equal maximum VRAM
budget across all methods by running all trainings on a single NVIDIA A100
with 40GB VRAM. This budget excludes the largest STU-Net variant ("H")
from our benchmark.

3.2 Utilized Datasets

Our benchmark utilizes six datasets: BTCV [25], ACDC [7], LiTS [8,4] BraTS2021
[5,27,6] KiTS2023 [19], and AMOS2022 (post challenge Task 2) [24]. We selected
datasets based on popularity, allowing us to follow R3 and assess the prevalent
datasets w.r.t their suitability for method benchmarking. Given that an effective
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Fig. 1. Benchmarking suitability of popular datasets measured as the ratio of inter-
versus intra-method standard deviation (SD). The dashed line denotes a ratio of 1.

benchmarking dataset should enable measuring consistent signals of method-
ological differences, we derive two requirements for suitability: 1) low standard
deviation (SD) of DSC Scores from the same method across the five folds (intra-
method SD) indicating statistical stability and a high signal-to-noise ratio. And
2), high SD across different methods (inter-method SD) indicating meaningful
signals of methodological differences, i.e. performance does not saturate too fast
on the respective task. Our final suitability score is the ratio of inter-method
versus intra-method SD.

Following R4, we report results using 5-fold cross-validation, employing splits
generated by nnU-Net and applying these consistently across all methods. Since
we do not develop new methods in this study, we refrain from distinguishing
between development versus test dataset pools. We report results with the av-
erage Dice Similarity Coefficients (DSC) being our primary metric, and the
Normalized Surface Dice (NSD) as our secondary metric. For both metrics,
results are averaged over all classes of each dataset as well as over the five
folds to assess generalist segmentation capabilities without delving into problem-
specific metric nuances. For datasets featuring hierarchical evaluation regions
(BraTS2021, KiTS2023), we calculate metrics for these regions rather than the
non-overlapping classes.

4 Results and Discussion

KiTS, AMOS, and ACDC are the most suitable datasets for bench-

marking 3D segmentation methods. Fig. 1 shows the outcome of the dataset
analysis based on our benchmark (for detailed results see Appendix Table 3). We
find that KiTS, AMOS, and ACDC exhibit low statistical noise (intra-method
SD) while effectively differentiating between methods, as indicated by a high
inter-method SD. Out of the three, KiTS features by far the highest inter-method
SD, indicating lowest performance saturation on the task. Conversely, scores on
BraTS21 are saturated, with minimal variation both between and within meth-
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Table 1. Benchmark results of prevalent 3D medical segmentation methods measured
as DSC score [%]. Colors are greener for higher scores, normalized per column. Ab-
breviations, "RT": Runtime measured in GPU hours on A100 40GB PCIe, "Arch.":
Architecture, "TF": Transformer, "Mam": Mamba, "A3DS": Auto3DSeg, "AC": Auto-
configuration, "nnU": implemented in nnU-Net framework, "DSC": Dice Similarity
Coefficient.

BTCV ACDC LiTS BraTS KiTS AMOS VRAM RT Arch. nnU
n=30 n=200 n=131 n=1251 n=489 n=360 [GB] [h]

nnU-Net (org.) [21] 83.08 91.54 80.09 91.24 86.04 88.64 7.70 9 CNN Yes
nnU-Net ResEnc M 83.31 91.99 80.75 91.26 86.79 88.77 9.10 12 CNN Yes
nnU-Net ResEnc L 83.35 91.69 81.60 91.13 88.17 89.41 22.70 35 CNN Yes
nnU-Net ResEnc XL 83.28 91.48 81.19 91.18 88.67 89.68 36.60 66 CNN Yes

MedNeXt L k3 [31] 84.70 92.65 82.14 91.35 88.25 89.62 17.30 68 CNN Yes
MedNeXt L k5 [31] 85.04 92.62 82.34 91.50 87.74 89.73 18.00 233 CNN Yes

STU-Net S [20] 82.92 91.04 78.50 90.55 84.93 88.08 5.20 10 CNN Yes
STU-Net B [20] 83.05 91.30 79.19 90.85 86.32 88.46 8.80 15 CNN Yes
STU-Net L [20] 83.36 91.31 80.31 91.26 85.84 89.34 26.50 51 CNN Yes

SwinUNETR [32] 78.89 91.29 76.50 90.68 81.27 83.81 13.10 15 TF Yes
SwinUNETRV2 [17] 80.85 92.01 77.85 90.74 84.14 86.24 13.40 15 TF Yes
nnFormer [41] 80.86 92.40 77.40 90.22 75.85 81.55 5.70 8 TF Yes
CoTr [37] 81.95 90.56 79.10 90.73 84.59 88.02 8.20 18 TF Yes

No-Mamba Base 83.69 91.89 80.57 91.26 85.98 89.04 12.0 24 CNN Yes
U-Mamba Bot [26] 83.51 91.79 80.40 91.26 86.22 89.13 12.40 24 Mam Yes
U-Mamba Enc [26] 82.41 91.22 80.27 90.91 86.34 88.38 24.90 47 Mam Yes

A3DS SegResNet [1,28] 80.69 90.69 79.28 90.79 81.11 87.27 20.00 22 CNN No
A3DS DiNTS [1,18] 78.18 82.97 69.05 87.75 65.28 82.35 29.20 16 CNN No
A3DS SwinUNETR [1,32] 76.54 82.68 68.59 89.90 52.82 85.05 34.50 9 TF No

ods. BTCV exhibits a SD ratio below one, indicating statistical noise may exceed
the signal of performance differences between methods. LiTS represents a mid-
dle ground in terms of benchmarking suitability. In summary, ACDC, AMOS,
and KiTS can be recommended as the most suitable datasets for benchmarking,
BraTS, LiTS, and BTCV are observed to be less suitable for this purpose.

CNN-based U-Nets yield best performance. Table 1 shows our exper-
imental results (see Appendix Table 4 for results measured as NSD). CNN-
based U-Nets implemented in nnU-Net consistently deliver strong performance
across all six datasets. Besides the original nnU-Net, this includes STUNet, Res-
Enc M/L/XL, MedNeXt and No-Mamba base. MedNeXt consistently stands
out with the best performance on all datasets except KiTS, although the gaps
are smaller on the datasets with higher benchmarking suitability. Furthermore,
MedNeXt’s performance gains come at a substantial cost of increased training
time (especially k5). Additional experiments in Appendix Table 5 indicate that
parts of MedNeXt’s advantages can be explained by target spacing selection
and are thus not exclusively linked to a superior architecture. Given that STU-
Net was primarily introduced with a focus on transfer learning, we analysed
the effect of pre-training on the Totalsegmentator dataset in Appendix Table 5
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[35]. Importantly, the observed superiority of CNNs is tied to the current ex-
perimental setting of training methods from scratch on benchmarks of limited
size. While the advantages of Transformers observed in other imaging domains
have not yet been realized in medical imaging, the future may hold promise
for their success as larger scales of training data become available and trans-
fer learning techniques improve. In contrast to prior claims, Transformer-based
architectures (SwinUNETR, nnFormer, CoTr) fail to match the performance of
CNNs. This includes not matching performance of the original nnU-Net, which
has been released long before the Transformer-based architectures. CoTr shows
the best results in the Transformer category, which prior literature related to
its convolutional components [30]. U-Mamba initially appears to perform well
across segmentation tasks, but comparison against the previously missing base-
line "No-Mamba Base" reveals that the mamba layers actually have no effect
on performance, and instead, the originally reported gains were due to coupling
the method with a residual U-Net (see P1). The fact that SegResNet shows best
performance among methods implemented in Auto3DSeg underscores that the
observed superiority of CNNs is not merely a bias introduced by nnU-Net.

nnU-Net is the state-of-the-art segmentation framework. We find that
none of the three methods featured in Auto3DSeg reaches the original nnU-Net
baseline ("org.") performance, indicating a substantial disadvantage due to the
underlying Auto3DSeg framework. This negative gap occurs despite significantly
lower VRAM usage and training time of the nnU-Net baseline. When comparing
the two frameworks with an identical method (SwinUNETR), nnU-Net wins in
5 out of 6 datasets. Following an official Auto3DSeg tutorial [2] we improved the
results via manual changes in configuration and further increasing its computing
budget, but failed to reach competitive performance (see Appendix Table 2).
Taken together, while Auto3DSeg can be pushed to produce state-of-the-art re-
sults, as evidenced by its recent challenge wins, its out-of-the-box capabilities do
not match nnU-Net.

Scaling models is important especially on larger datasets We tested
the effect of model scaling based on two methods: nnU-Net Resenc M/L/XL
and STU-Net S/B/L. We find that on the more challenging tasks AMOS and
KiTS, a significant boost in performance is observed as the compute budget in-
creases. As expected, the "easier" tasks BTCV and BraTS bear less potential for
performance gains from model scaling. These findings underscore the importance
of size-awareness and dataset-awareness for meaningful method comparison. For
instance, evidence for the superiority of a large new segmentation model should
not be based on comparison against a much smaller original nnU-Net.

5 Conclusion

Our benchmark reveals a concerning trend in 3D medical image segmentation:
most methods introduced in recent years fail to surpass the original nnU-Net
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baseline introduced in 2018. This raises the question: How can we steer the field
towards genuine progress? In this study, we link the observed shortcomings to a
widespread lack of rigor in method validation. To counteract this, we introduce:
1) A systematic collection of validation pitfalls along with recommendations for
their avoidance, 2) The release of updated standardized baselines facilitating
meaningful method validation, 3) A strategy for measuring the suitability of
datasets for method benchmarking.

Beyond these contributions, achieving true and lasting progress in the field re-
quires a cultural shift, where the quality of validation is valued as much as the
novelty of network architectures. Making this shift happen will be the responsi-
bility of method developers, users, and reviewers alike.
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