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Abstract. Contrast-enhanced ultrasound (CEUS) allows real-time vi-
sualization of the vascular distribution within thyroid nodules, garnering
significant attention in their intelligent diagnosis. Existing methods ei-
ther focus on modifying models while neglecting the unique aspects of
CEUS, or rely only single-modality data while overlooking the comple-
mentary information contained in the dual-view CEUS data. To over-
come these limitations, inspired by the CEUS thyroid imaging reporting
and data system (TI-RADS), this paper proposes a new dual-modality
watershed fusion network (DWFN) for diagnosing thyroid nodules using
dual-view CEUS videos. Specifically, the method introduces the water-
shed analysis from the remote sensing field and combines it with the opti-
cal flow method to extract the enhancement direction feature mentioned
in the CEUS TI-RADS. On this basis, the interpretable watershed 3D
network (W3DN) is constructed by C3D to further extract the dynamic
blood flow features contained in CEUS videos. Furthermore, to make
more comprehensive use of clinical information, a dual-modality 2D and
3D combined network, DWFN is constructed, which fuses the morpho-
logical features extracted from US images by InceptionResNetV2 and
the dynamic blood flow features extracted from CEUS videos by W3DN,
to classify thyroid nodules as benign or malignant. The effectiveness of
the proposed DWFN method was evaluated using extensive experimental
results on a collected dataset of dual-view CEUS videos for thyroid nod-
ules, achieving an area under the receiver operating characteristic curve
of 0.920, with accuracy, sensitivity, specificity, positive predictive value,
negative predictive value, F1 score of 0.858, 0.845, 0.872, 0.879, 0.837,
and 0.861, respectively, outperforming other state-of-the-art methods.

Keywords: Thyroid cancer · Ultrasound · Contrast-enhanced ultra-
sound (CEUS)· Watershed analysis.

1 Introduction

Thyroid cancer has become the fastest-growing tumor in women globally, and the
key to its prevention and treatment lies in early screening [2,9], which is mainly
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conducted by grayscale ultrasound (US), supplemented by contrast-enhanced
ultrasound (CEUS), doppler imaging, etc [19]. Among them, compared with the
traditional US, which focuses more on morphological information (such as shape,
boundary, aspect ratio, and size) [3], CEUS plays a crucial role in the diagnosis
of thyroid nodules by observing the microvascular blood flow in the lesion area
and the relative echo intensity changes with surrounding tissues [23]. Moreover,
the CEUS thyroid imaging reporting and data system (TI-RADS) [18] pointed
out that the combined use of CEUS and US had a positive effect on the risk
stratification of thyroid nodules compared with the employ of US alone, helping
to further improve the diagnostic performance.

Currently, the diagnosis of thyroid cancer mainly relies on radiologists ob-
serving CEUS videos back and forth and making subjective diagnoses based on
their professional knowledge, which is not only time-consuming and laborious
but also prone to misdiagnosis due to the contrast agent entering and disappear-
ing within a few seconds [25]. These limitations have promoted the development
of computer-assisted systems based on artificial intelligence (AI) and have made
certain progress in clinical applications [8]. However, most research on the success
of AI algorithms focuses on improvements at deep learning networks, ignoring
the uniqueness of CEUS in clinical diagnosis. Additionally, radiologists usually
make judgments based on dual-view data in clinical examinations, because US is
needed to locate the nodule before the contrast agent enters, and then the blood
flow movement information around and inside the nodule is observed during the
entry of the contrast agent for diagnosis [12].

To better align with clinical diagnosis practices, based on the clinical CEUS
TI-RADS, this study introduced watershed analysis from remote sensing, and
combined dual-modality (US and CEUS) to identify the benign and malignant
thyroid nodules. The main contributions are as follows: (i) We introduced the
concept of watershed analysis from remote sensing field, combined with optical
flow methods, to propose a watershed-based method for extracting the enhance-
ment direction (ED) mentioned in the CEUS TI-RADS. (ii) Based on the clinical
features ED, for CEUS videos, we constructed a 3D network fused watershed
analysis to extract deep learning features, thereby capturing the blood flow dis-
tribution and contrast agent motion information contained in CEUS. (iii) To
better align with the clinical diagnostic process, we combined dual-modality to
construct a 2D+3D network, DWFN, which extracts morphological features from
US images and dynamic blood flow information from CEUS videos to improve
the performance of thyroid cancer classification.

2 Related Work

Related work based on US. According to the latest research results, the
accuracy of AI diagnosis of thyroid cancer on US has reached 85%-90% [10,
11]. Early limitations in ultrasound technology were evident in most studies
based on single grayscale US images [5]. With the continuous development of
various new US technologies, many scholars began to integrate multi-modality
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US (such as elastography, color Doppler, CEUS, etc.) for research, achieving good
classification results [16, 24]. However, such methods are affected by the clarity
of thyroid US images, and because they are carried out on static images, they
may overlook many effective features and rely on the accuracy of radiologists
capturing static images.

Related work based on CEUS. Compared with static US analysis, AI di-
agnosis of CEUS videos is more challenging, as it necessitates the inclusion of
temporal features besides the spatial features of the original 2D image [15]. Early
studies focused on extracting quantitative functional parameters from regional
time intensity curves [17] or factor curves obtained through matrix decomposi-
tion [7]. However, these parameters can only provide limited functional informa-
tion, overlooking the rich morphological features of tumor vascularization [21].
Subsequently, researchers developed deep learning models based on videos, re-
sulting in various variants of 3D CNN: I3D [4], R (2+1) D [22], Vit3D [6], etc.
However, most current research focuses solely on the deep learning features,
which is a black box, thereby neglecting their significant significance in clin-
ical diagnosis. Therefore, developing interpretable deep learning models that
integrate the blood flow information contained in CEUS videos poses a criti-
cal challenge. Additionally, single modality information has inherent limitations,
whereas dual-modality approaches can leverage information complementarity to
offer more comprehensive features and improve diagnostic accuracy.

3 Method

As shown in Fig.1, the proposed dual-modality watershed fusion network (DWFN)
primarily comprises preprocessing stage, US branch, CEUS branch, and feature
fusion stage.

Fig. 1. Proposed framework of the Dual-modality Watershed Fusion Network (DWFN).
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Preprocessing Stage. As the collected clinical data constitutes a dual-view
video with a one-to-one positional relationship between US and CEUS, our ini-
tial step involves cropping all dual-view data along the central axis. Given the
minimal changes in the US video during the examination, an experienced radi-
ologist cropped the irrelevant information on the initial frame of the US video.
This marked frame is directly used as input for the subsequent US branch and
is mapped to each frame of the CEUS video. Additionally, considering incon-
sistent frame rates (ranging from 100 to 3000 frames) and redundancy between
frames, we calculated the pixel intensity of all frames. We established a first-
order derivative relationship between intensity and time order, automatically
selecting 30 frames as input for subsequent CEUS branches.

US Branch. As clinicians focus more on morphological information in US,
and US videos remain largely unchanged during acquisition, this study utilizes
only the preprocessed US images as input for the subsequent model to improve
computational efficiency. This module uses a two-dimensional convolutional neu-
ral network based on InceptionResNetV2 [20] to extract features and employs
an MLP classifier [1] to filter the extracted features. Specifically, InceptionRes-
NetV2 consists of 1 Inception-A module (5 3x3 convolutional layers and 2 3x3
max pooling layers), 5 Inception-B modules, Reduction-A, 10 Inception-C mod-
ules, Reduction-B, 5 Inception-D modules, Reduction-C, and a 2x2 average pool-
ing layer. All Conv layers have BatchNorm and ReLu activation. The number of
channels from Conv1 to Conv5 are 32, 32, 64, 80, and 192, respectively. The 1536-
dimensional features obtained from the average pooling of InceptionResNetV2
are then reduced to d1 = 2 dimensions using a three-layer MLP to generate a
fixed-length feature while enhancing network performance.

CEUS Branch. To investigate the distribution characteristics of contrast agent
in CEUS, this study utilized preprocessed 30 frames of CEUS videos. We in-
troduced a watershed analysis [13] from the remote sensing field, calculated the
contrast agent flow rate per frame, and combined with the Lucas-Kanade optical
flow method [14] to estimate the motion information of the contrast agent be-
tween adjacent frames. Furthermore, we extracted the clinical features d2 related
to enhancement direction (ED) of the contrast agent, as mentioned in CEUS TI-
RADS. Detailed information can be found in the supplementary. Based on the
clinical features, ED, dynamic blood flow features were extracted from CEUS
videos using C3D [21], which consists of 5 convolutional layers and 5 pooling
layers (each convolutional layer is followed by a pooling layer), aimed at ex-
tracting dynamic information from CEUS videos. The number of filters in the
5 convolutional layers from 1 to 5 are 64, 128, 256, 256, and 256, respectively.
Similarly, using an MLP classifier, the 8192 dimensional features extracted by
C3D are reduced to d3 = 2 dimensions.

Feature Fusion Stage. The DWFN first fused the CEUS features by concate-
nating the ED features (d2) with the spatiotemporal features (d3) extracted by
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C3D, and then concatenates the new CEUS features (dnew) with the US fea-
tures (d1). Subsequently, an MLP is used to reduce the concatenated features,
ultimately achieving the classification of benign and malignant thyroid nodules.

4 Results and Discussion

This paper retrospectively collected thyroid data from 986 patients from Sun
Yat-sen Memorial Hospital, Sun Yat-sen University, including 471 benign cases
and 515 malignant cases. The dataset was randomly divided into 3 groups in a
ratio of 6:2:2 using three-fold cross-validation approach. Further implementation
details can be found in the supplementary material. To evaluate the effectiveness
of our proposed method, a series of comparative and ablation experiments were
conducted.

4.1 Analysis of Classification Performance

Table 1 displays the classification results of various modalities (single modal-
ity versus our proposed DWFN). The results indicate that the combined dual-
modality MUS+CEUS is superior to single- modality based solely on US and
CEUS (with AUC values of 0.888 compared to 0.867 and 0.851). Furthermore,
the classification performance of MUS is higher than that of MCEUS (1.6% higher
AUC), which aligns with the fact that radiologists primarily utilize US for thyroid
cancer diagnosis. However, this does not undermine the significance of charac-
teristics in CEUS, on the contrary, the blood flow information contained within
CEUS videos is crucial for clinical diagnosis. The results of the CEUS modal-
ity employing watershed analysis demonstrate improvements in AUC, Accuracy,
Sensitivity, Specificity, PPV, NPV, and F1 by 6% (the p value is <.001), 5.6%,
1%, 10.6%, 8.5%, 2.8%, and 4.7%, respectively, compared to the CEUS modality
without watershed analysis. These findings validate that the ED extracted by
watershed analysis can quantify the direction of contrast agent entry into blood
vessels, thereby providing clinically relevant key features for the final thyroid
cancer classification task. Fig.2 (a) depicts the receiver operating characteristic
curve of the corresponding AUC value, with the proposed DWFN achieving the
optimal AUC value of 92.0%. These results collectively confirm that the DWFN
can effectively learn dual-modality features and greatly improve accuracy.

4.2 Ablation experiment

Comparison with Different US Feature Extractors A critical component
of our proposed DWFN is the US feature extraction network, InceptionRes-
NetV2, which is crucial for the final diagnosis of benign and malignant thy-
roid nodules, as clinicians focus more on the morphological features. For this
reason, this study employed US images as model input instead of US videos.
Table2 provided a quantitative comparison of US features extracted by differ-
ent 2D networks in thyroid cancer classification. It can be observed that the
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Table 1. The comparison of classification performance under different modality data.

Method AUC Accuracy Sensitivity Specificity PPV NPV
F1(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

MUS
86.0∗ 82.2 84.5 79.8 82.1 82.4 83.3(81.4-91.6) (78.2-88.3) (74.2-94.2) (68.3-90.5) (74.0-90.5) (74.6-92.6)

MCEUS
85.1∗ 80.2 82.5 77.7 80.2 80.2 81.3(79.4-90.0) (75.1-86.3) (65.0-89.2) (71.0-93.0) (74.1-91.9) (69.7-88.1)

MCEUS+ED
91.1 85.8 83.5 88.3 88.7 83.0 86.0(87-94.8) (81.7-90.9) (77.6-95.0) (74.5-94.0) (79.3-94.3) (77.1-93.7)

MUS+CEUS
88.8∗ 83.2 86.4 79.8 82.4 84.3 84.4(84.1-93.2) (79.2-88.3) (69.9-93.9) (72.2-95.7) (76.9-95.4) (71.8-92.2)

DWFN 92.0 85.8 84.5 87.2 87.9 83.7 86.1(88.2-95.6) (81.7-91.4) (74.3-92.5) (80.8-96.8) (81.7-96.6) (75.9-92.0)

Note: All indicators are in %, AUC = area under the receiver operating characteristic
curve, CI = confidence interval, PPV = positive predictive value, NPV = negative pr-
edictive value, ∗ indicates that the P-value is less than 0.05 compared with DWFN.

Fig. 2. (a) Areas under the receiver operating characteristic curves (AUCs) of different
methods in Table1, (b) Evaluation comparing different numbers of CEUS frames.



DWFN for Thyroid Nodule Classification of Dual-View CEUS Video 7

overall classification performance AUC of 7 different 2D networks (including
InceptionResNetV2 used in DWFN) is in the range of [86.3%-92.0%], and the
performance differences are not significant. Among them, the proposed DWFN
achieves the best classification performance in terms of AUC, Accuracy and F1,
among which, although the Sensitivity of ResNet50, ResNet101 (86.4%, 85.4%)
is slightly higher (1.9%, 0.9%) than that of DWFN, their Specificity is much
lower (6%, 7.4%) than DWFN. This is mainly due to the fact that Sensitivity
and Specificity are a set of trade-off evaluation indicators. In comparison, DWFN
has the optimal Specificity while maintaining suboptimal Sensitivity, which can
better extract morphological features of US, and achieve the best classification
performance due to its combination of Residual block and Inception structure.

Table 2. Comparison of different backbone 2D feature extraction network of US im-
ages.

DWFN- AUC Accuracy Sensitivity Specificity PPV NPV
F1US Branch (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

AlexNet 89.4 82.7 83.5 81.9 83.5 81.9 83.5(84.7-93.4) (78.7-88.3) (72.6-98.0) (64.9-92.7) (73.5-92.4) (72.9-96.9)

VGG19 91.0 85.3 82.5 88.3 88.5 82.2 85.4(88.2-95.2) (82.2-90.9) (78.8-96.0) (75.0-93.5) (79.2-93.9) (77.8-95.0)

GoogleNet 89.1 81.7 81.6 81.9 83.2 80.2 82.4(84.7-93.3) (78.2-87.8) (71.7-94.3) (69.1-93.1) (75.6-92.9) (72.3-92.8)

MobileNet 90.5 83.2 80.6 86.2 86.5 80.2 83.4(86.1-94.4) (80.2-89.3) (76.9-98.9) (66.0-92.5) (74.0-92.7) (76.4-98.4)

ResNet34 86.3 80.7 84.5 76.6 79.8 81.8 82.1(81.4-91.0) (76.6-86.8) (73.8-92.7) (67.0-88.5) (73.2-88.8) (72.9-90.5)

ResNet50 90.9 84.3 86.4 81.9 84.0 84.6 85.2(86.6-94.8) (80.2-89.8) (77.6-95.6) (71.7-91.7) (76.2-92.1) (76.7-94.7)

ResNet101 88.6 82.7 85.4 79.8 82.2 83.3 83.9(83.7-92.8) (78.7-88.3) (75.2-94.3) (72.1-92.3) (76.2-92.1) (74.6-93.2)

Comparison with Different CEUS Feature Extractors In addition, an-
other key component of our proposed method is the CEUS feature extraction
network, C3D. Since clinicians pay more attention to the blood flow changes
during the contrast agent entry process, it is critical to extract deep learning
features from CEUS videos using appropriate classifiers in addition to using
watershed analysis to extract the ED feature. Table 3 provides a quantitative
comparison of different CEUS feature extractors in thyroid cancer classification.
Note that TRN based on 2D network is significantly lower than other models
based on 2+1D networks and 3D networks (AUC is at least 19.8% lower), which
may indicate that TRN, using 2D convolution, cannot capture both blood flow
distribution and dynamic information simultaneously. Additionally, besides the
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C3D used in DWFN, the I3D exhibits the best classification performance. This
is attributed to its use a dual-stream CNN with dilated 3D convolution on dense
RGB and optical flow sequences. The dual-stream CNN captures dynamic in-
formation, aligning with the concept of watershed analysis in this paper, further
highlighting the superiority of DWFN.

Table 3. Comparison of different CEUS feature extraction of CEUS videos

DWFN- AUC Accuracy Sensitivity Specificity PPV NPV
F1CEUS branch (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

TRN 65.9 68.5 93.2 41.5 63.6 84.8 75.6(59.4-73.1) (62.9-75.6) (85.4-98.1) (31.3-53.7) (56.6-71.8) (74.3-95.7)

I3D 91.7 84.3 79.6 89.4 89.1 80.0 84.1(87.6-95.2) (81.2-90.4) (74.3-93.4) (75.8-95.8) (79.2-95.7) (74.6-92.5)

P3D 88.5 79.2 75.7 83.0 83.0 75.7 79.2(83.8-92.8) (76.1-86.3) (67.6-97.9) (60.2-92.2) (69.9-91.7) (705-9.64)

R3D 89.6 83.8 96.1 70.2 78.0 94.3 86.1(85.2-93.5) (79.7-88.8) (83.2-100) (63.9-84.9) (72.5-87.4) (81.7-100)

R(2+1)D 89.4 81.7 83.5 79.8 81.9 81.5 82.7(84.5-93.5) (77.7-87.8) (68.9-95.5) (67.3-94.6) (74.2-93.9) (71.6-94.2)

S3D 91.2 84.3 82.5 86.2 86.2 81.8 84.6(86.9-94.8) (80.7-89.8) (79.2-98.0) (695-92.3) (69.5-92.3) (77.7-97.0)

Vit3D 87.7 79.2 95.1 61.7 73.1 92.1 82.7(82.6-92.1) (75.1-85.8) (62.4-99.1) (56.6-95.0) (68.1-93.8) (67.5-98.4)

Influence of the Number of Selected Key Frames. Furthermore, we inves-
tigated the impact of all frame numbers on the final classification. Specifically,
we selected frames 4, 8, 16, 30 in an ordered and equidistant manner, presenting
the corresponding results in shown in Fig.2 (b). Observing the figure, the AUC
value performance of 4 frames is 0.1% higher than that of 8 frames, and the
AUC performance of 16 frames is 0.1% lower than that of 30 frames. Therefore,
in our implementation, selecting 30 key frames as the input of CEUS branch can
capture the dynamic trend of blood flow to a large extent, achieving the highest
classification performance.

5 Conclusion

This paper proposes a dual-modality watershed fusion network for distinguishing
between benign and malignant thyroid cancer. We extensively evaluated the
effectiveness of our method on our collected dataset of thyroid nodules, achieving
optimal classification performance compared to both single-modality methodf
and state-of-the-art methods without watershed analysis. Performance metrics
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include an AUC of 0.92 (95% CI, 0.882-0.956), accuracy of 0.858 (95% CI, 0.817-
0.914), sensitivity of 0.845 (95% CI, 0.743-0.925), specificity of 0.872 (95% CI,
0.808-0.968), PPV of 0.879 (95% CI, 0.817-0.966), NPV of 0.837 (95% CI, 0.759-
0.920), and F1 score of 0.861. More importantly, the watershed analysis method
we designed considers the direction of contrast agent movement in CEUS videos,
leveraging clinical prior knowledge and integrating deep learning methods to
construct a more interpretable model for thyroid cancer classification, ultimately
improving classification performance.
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