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Abstract. Bone age assessment (BAA) is crucial for evaluating the
skeletal maturity of children in pediatric clinics. The decline in assess-
ment accuracy is attributed to the existence of inter-gender disparity.
Current automatic methods bridge this gap by relying on bone regions
of interest and gender, resulting in high annotation costs. Meanwhile, the
models still grapple with efficiency bottleneck for lightweight deployment.
To address these challenges, this study presents Gender-adaptive Graph
Vision Mamba (GGVMamba) framework with only raw X-ray images.
Concretely, a region augmentation process, called directed scan module,
is proposed to integrate local context from various directions of bone
X-ray images. Then we construct a novel graph Mamba encoder with
linear complexity, fostering robust modelling for both within and among
region features. Moreover, a gender adaptive strategy is proposed to im-
prove gender consistency by dynamically selecting gender-specific graph
structures. Experiments demonstrate that GGVMamba obtains state-
of-the-art results with MAE of 3.82, 4.91, and 4.14 on RSNA, RHPE,
and DHA, respectively. Notably, GGVMamba shows exceptional gender
consistency and optimal efficiency with minimal GPU load. The code is
available at https://github.com/SCU-zly/GGVMamba.

Keywords: Bone Age Assessment · X-ray · Vision Mamba · Linear
Complexity · Efficient.

1 Introduction

Due to the early developmental changes in pediatric skeletal growth, adoles-
cents routinely visit healthcare facilities for the periodic acquisition of X-ray
images aimed at estimating bone age. Pediatric bone age assessment (BAA) is
an effective early diagnostic method for detecting growth abnormalities in mi-
nors [7]. Conventional methods such as the Greulich-Pyle (GP) approach [9] and
the Tanner and Whitehouse method [21], which depend on manual expertise,
exhibit significant subjective errors and low efficiency.

Human prior knowledge [21] indicates that models should prioritize the bone’s
epiphyseal regions of interest (ROI) and causal relationships among highly het-
erogeneous regions. Early deep-learning methods divide X-ray images into re-
gions and extract features separately. The introduction of Central Positions of

https://github.com/SCU-zly/GGVMamba


2 Zhou et.al

Anatomical ROI (CPAR) enhanced BAA performance through BoNet [5] and
SIMBA [8]. PRSNet [13] embeds more effective contextual information in part
representations. Doctor Imitator [2] introduces a dual-graph attention module to
learn relationships between features. Leveraging attention mechanisms, several
studies [18,19] used the Vision Transformer [4] to emphasize image heterogeneity.
Recently, a set of one-stage techniques that rely exclusively on image-level anno-
tation data has been developed. MMANet [24] introduces an additional residual
spatial attention module to address biases stemming from conventional residual
structures and produce more distinct attention maps. Wang et al. [22] employed
multi-instance learning to integrate gender-specific details derived from individ-
ual images during the prediction of bone age. Nevertheless, the high cost of
annotation and computation in two-stage and one-stage methods hinders their
clinical utility. The researches [9,21] also indicate significant discrepancies in
the areas of interest for BAA between different genders. However, most mod-
els [2,5,8,15,24] take gender as input in the highest dimension, rarely allowing
the model itself to focus on the inherent differences between genders.

Particularly, PEAR-Net [16] achieves effective performance without relying
on gender input. However, it has limitations to implement in terms of compu-
tational efficiency and parameter size. Inspired by Mamba [10], which achieves
remarkable accuracy in Natural Language Processing (NLP) with linear compu-
tational complexity, we introduce the innovative Gender-adaptive Graph Vision
Mamba (GGVMamba) based on pure vision Mamba frameworks [17,25]. In ad-
dition, GGVMamba addresses gender consistency within the model using graph
structures. The outlined contributions are as follows:

1) We introduce a novel directed scan module. The directed scan mod-
ule highlights the heterogeneous characteristics of bone X-ray images both
column-wise and row-wise (refer to Fig. 1). This module transforms a non-
directed sequence into four directed sequences, enhances region features, and
improves the generalization ability across various datasets.

2) We propose graph Mamba encoder in achieving two-stage feature ex-
traction capability with one-stage efficiency. We employ bidirectional com-
pression modelling to assist GGVMamba in capturing dense region features.
With the relation Mamba learner, the encoder robustly learns the graph
structures between regions by linear long-range attention, thereby improv-
ing the precision of GGVMamba.

3) In GGVMamba, a gender adaptive strategy is formulated on graph
regularization constraints. In particular, utilizing the representation of graph
nodes in the Mamba latent space as intra-graph consistency, this strategy
focuses on balancing intra-graph and inter-graph consistency to enhance gen-
der consistency.

To improve real-world applicability, divergent from conventional singular dataset
validation, we gathered data from three public datasets: Radiological Society of
North America (RSNA) challenge [12] for automatic BAA methods, Radiological
Hand Pose Estimation [5] (RHPE) dataset and Digital Hand Atlas (DHA) [7]
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dataset. The experimental results show that GGVMamba has the lowest MAE
compared to state-of-the-art models, with remarkable gender consistency and
efficiency.

2 Method

2.1 Problem Formulation

Let X ∈ RH×W×C represent the input of a hand X-ray image. Following Patch
Embedding, the sequence [x1, x2, · · · , xn ∈ X] captures patches while preserving
2D positional information, where the ordering from 1 to n corresponds to the
top-right. h serves as the latent state within the model space. As shown in Fig.
1, W0 and W1 represent the output male-specific graph M and female-specific
graph F, respectively.
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Fig. 1. Overview of GGVMamba framework.

2.2 Directed Scan Module

The concept of “directed” is narrowly defined, indicating the order of semantic
relevance information among patches. Natural language possesses an inherent
semantic sequence order, whereas visual data lacks this order. From this stand-
point, the patches exhibit undirected characteristics after patch embedding.

We characterize semantic relevance information as causal information, which
relies on the assumption that sequential dependencies exist within the patch
sequence. According to [13], X-ray patches exhibit causal information due to
the interrelated structure of bone elements. We introduce a patch augmenta-
tion scheme named directed scan module, designed to accentuate local context



4 Zhou et.al

without ROI annotation. The objective is to guarantee that each bone element
combines causal information by linear projection. Unlike the cross scan [17], we
guarantee spatial adjacency for each patch. Unlike the bidirectional scan [25],
the directed scan module utilizes four complementary traversal paths to address
the limited contextual awareness.

The process involves collecting patches from four specific directions: top-
right, top-left, bottom-right, and bottom-left. Meanwhile, this module integrates
with patch embedding through backpropagation, ensuring a smoother augmenta-
tion process for region features. Furthermore, data augmentation through linear
transformations can enhance the model’s generalization capability [23]. Com-
bining transformations applied to the entire X-ray images, such as flipping and
translation, scanning based on directed sequences exhibits greater robustness in
the unseen bone age domain.

2.3 Graph Mamba Encoder

Mamba Scheme Given input sequence x(t) ∈ R and the corresponding out-
put is sequence y(t) ∈ R, the transition from intermediate state h(t) ∈ RN to
output follows a linear Ordinary Differential Equation (ODE): h′(t) = Ah(t) +
Bx(t), y(t) = Ch(t). The h(t) signifies the intermediate latent state in the transi-
tion from x(t) to y(t). This system is defined by matrices A ∈ RN×N , B ∈ RN×1,
and C ∈ R1×N . In this context, h′(t) denotes the first derivative of h(t). State
Space Model(SSM) uses discrete transformations, employing the timescale vari-
able ∆ to discretize parameters into A and B. The common method for dis-
cretization involves employing a Zero-Order Hold (ZOH), which streamlines the
transition from a continuous system to a discrete system, as follows:

A = exp(∆A),
B = (∆A)−1(exp(∆A)− I) ·∆B,
ht = Aht−1 +Bxt,
yt = Cht.

t = 0, 1, · · · , n (1)

Gu et al. [11] reveals that the earlier Eq.1 is equivalent to the global con-
volution K:K = (CB,CAB, · · · , CA

n−1
B), h = X ∗K. The crucial distinction

between SSM and Mamba is manifested in the expression of multiple parame-
ters ∆,B,C as input-dependent functions. Gu et al. [10] encapsulated the data-
dependent mechanism as the Selective Scan Structured State Space model (S6).

Vision Mamba Block. In terms of expressing feature latent spaces within
patches, attention-based methods typically necessitate quadratic time complex-
ity calculations. Meanwhile, linear mapping methods do not offer fine-grained
interpretation. Consequently, we propose a modeling methodology for the in-
ternal representation of region features, referred to as the vision Mamba block
(VMB). VMB enhances linear attention inside the highly heterogeneous regions
by integrating a bidirectional S6 mechanism. Various observation sequences are
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individually mapped to the latent Mamba space through four mutually uncou-
pled VMBs. VMB leveraged Mamba to achieve a breakthrough in constructing
linear-complexity blocks while addressing the limitations of context compression.
The details of VMB are illustrated in Fig. 1. The input X undergoes bidirec-
tional transmission through both forward and backward flows. After a sequence
convolution to filter out low-specificity features, we obtain the derived sequence
X ′. For a vector of length n, each x′

t is transformed through a linear mapping,
resulting in At, Bt, Ct, ∆t. Subsequently, we integrate the forward and backward
S6 bidirectional computations, focusing linear attention on high-specificity con-
text. The final result is processed through a SiLU(z) activation function via a
residual connection gate to accelerate training convergence.

Dynamic Graph Layer. The relationships between the highly heterogeneous
regions in bone age X-rays exhibit variations across different gender domains.
These relationships are highly correlated with the accuracy of bone age predic-
tion. We offer a gender-adaptive solution of gender-specific feature representation
termed the dynamic graph layer (DGL). DGL allows us to dynamically select
gender-specific graph, enabling the exploration and learning of intricate relation-
ships between genders. Instead of simply treating the four directed features as
graph nodes, DGL reshapes the latent space. This aids in the stereoscopic mod-
elling of directed feature sequences, helping GGVMamba learn the global context
within the bones. We introduce DGL with relation Mamba learner to capture
graph features with low computation. The learner first initials the adjacency ma-
trix of the gender-specific dynamic graph, denoted as (g = 0, 1),W g ∈ Rnd×nd ,
where nd represents the number of nodes. This description addresses the input
hidden state ωg ∈ RL×nd with L denoting the number of latent dimensions. The
matrix W g is learned based on:{

ω∗
g = ABωg + Bωg,

W g = softplus(Cω∗
g).

(2)

In this context, A ∈ Rnd×L,B ∈ RL×L, C ∈ Rnd×L are all data dependent on
the hidden state ωg, and softplus serves as the activation function. Then we add
a k-nearest neighbor (KNN) graph W

knn

g to matrix W g, defining each node’s
k-nearest neighbors based on cosine similarity reinforces the graph’s information
on node relationships. Lastly, the resulting adjacency matrix Wg is expressed
as Wg = λW

knn

g + (1 − λ)W g. The hyper-parameter λ ∈ [0, 1) serves to adjust
the training direction of the relation Mamba learner. The matrix Wg is acquired
through the parameterized Multi-Layer Perceptron (MLP), learning the internal
graph structure between high-dimensional spatial features.

2.4 Gender Adaptive Strategy

A gender adaptive strategy is introduced to strengthen the learning of gen-
der consistency in dynamic selection. Dynamic selection serves as the abstract
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expression of multi-graph regularization, which aims to attain desirable prop-
erties like smoothness, sparsity, and connectivity [3,20,26]. Notably, minimizing
the Dirichlet energy [1] is crucial to prevent over-smoothing of graph nodes.
This study accomplishes this by normalizing the graph Laplacian operator L =
D − Wg, making the Dirichlet energy independent of node degrees, where D
represents the degree matrix of Wg. However, to prevent trivial solutions during
regularization, we suggest graph sparsification [14] and ensure strong connectiv-
ity. The constraints for the objective function of dynamic selection are detailed
in Eq. 3. The tr(·) denotes the trace operation on a matrix, || · ||F represents
the Frobenius norm of a matrix, and 1 is a column vector consisting of identical
elements set to 1, with a length equal to the number of nodes in the graph.

Lsmooth(hg,Wg) =
1

N2 tr(h
T
g Lhg),

Lsparse(Wg) =
1

N2 ||Wg||2F ,
Ldegree(Wg) = − 1

N 1T log(W1).
(3)

In this mechanism, integrating the weighted average of attributes enhances
inter-graph consistency. The regularization process in inter-graph consistency
representation requires a balance between graph smoothness, sparsity, and con-
nectivity. Concurrently, we apply the Smooth L1 loss Lbone in the bone age out-
put prediction to capture intra-graph contextual similarity. The gender adaptive
strategy combines desirable properties to strike a balance between inter-graph
and intra-graph consistency: LBAA = 1

2

∑2
g=0(αLsmooth(hg,Wg)+βLsparse(Wg)+

γLdegree(Wg))+(1−α−β−γ)Lbone. Here, α, β, γ ∈ [0, 1] are hyper-parameters
adjusted during training.

3 Experiments

3.1 Materials

The experimental procedures applied to the RSNA and RHPE datasets are based
on their origin settings. The DHA dataset consists of 1,400 digitized left hand
radiographs, divided into training, validation, and testing sets in a ratio of 7:2:1.
All X-ray inputs are normalized and resized to 512 × 512 pixels. The software
environment includes a PyTorch 2.1.1 base framework with Python 3.10 running
on an NVIDIA GeForce RTX 4090 GPU. We allocate 12 VMBs for every directed
sequence. The optimal performance is achieved when α, β, γ is set to 0.2 and λ
to 0.8. The Adam optimizer is used with ϵ set to 1 × 10−8. The learning rate
scheduler starts at 0.01 and follows a cosine decay. Overall, training is done with
a batch size of 32.

We present all results from the test set in terms of Mean Absolute Error
(MAE). Gender errors denote the absolute errors between MAE values within
the subset of gender. We also use metrics like floating point operations per second
(FLOPs) and model size to evaluate model efficiency in the experiments.
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Table 1. Quantitative comparison of different studies on public datasets.

Method Without ROI
annotation

Without
gender input

FLOPs↓
(×109) Model size↓

MAE(months)↓

RSNA RHPE DHA

Bonet [5] × × 123.2 17.8M 4.14 7.60 -

PEAR-Net [16] ✓ ✓ 180.0 42.0M 3.99 - -

DI [2] × × 13.1 9.8M 4.30 8.15 -

SIMBA [8] × × 138.2 38.7M - 5.47 -

Fahmida et al. [6] ✓ × 73.5 16.3M - - 4.21

MMANet [24] ✓ × 45.8 30.8M 3.88 - -

Ours ✓ ✓ 11.3 8.5M 3.82 4.91 4.14

3.2 Compare with State-of-the-Arts

Table 1 compares GGVMamba with the state-of-the-art methods. GGVMamba
achieves the lowest MAE of 3.82 months, 4.91 months, and 4.14 months on
three public datasets, respectively. Generally, GGVMamba significantly reduces
the challenges of high computation and model complexity compared to previous
studies [2,5,6,8,16,24]. Specifically, Our model shows a 13.7% efficiency improve-
ment and a 13.2% reduction in computational complexity when compared to the
state-of-the-art DI [2]. This progress is attributed to a reduction of 1.3 million
parameters and a decrease in FLOPs from 13.1× 109 to 11.3× 109.

(a) Comparative experiments of inter-gender disparity on public datasets (b) Ablation study on different Graph Node Numbers

Fig. 2. Comparative experiments and ablation study of inter-gender disparity.

Fig. 2(a) illustrates the MAE and gender errors on gender subsets RSNA,
RHPE, and DHA. Compared to the PEAR-Net [16] validated on RSNA, our
approach reduces inter-gender disparity from 0.1 to 0.02. Furthermore, GGV-
Mamba achieves a further reduction in MAE. In addition, GGVMamba demon-



8 Zhou et.al

strates remarkable gender consistency in RHPE and DHA, affirming the model’s
generalization.

3.3 Ablation Studies

Table 2. Ablation study on RSNA dataset.

Exp. Directed scan
module

Graph Mamba
encoder

Gender adaptive
strategy MAE(month)↓ Gender errors↓

1 5.35 0.55
2 ✓ 4.86 0.53
3 ✓ ✓ 4.21 0.39
4 ✓ ✓ 4.67 0.10
5 ✓ ✓ ✓ 3.82 0.02

Table 2 presents ablation experiments on the effectiveness of the proposed
components for GGVMamba. In each experiment (Exp.), inactive modules are
substituted with the ViT-B/16 structure [4]. As evidenced by Exp. 1 and Exp.
2, the directed scan Module improves the model’s precision by incorporating
local attention. A comparison between Exp.2 and Exp.3 shows a significant im-
provement in the model’s MAE, providing strong evidence for the graph Mamba
encoder’s role in enhancing output accuracy. Contrasting Exp.2 and Exp.4 re-
veals a noticeable decrease in errors within the gender subset, indicating that the
gender adaptive strategy ensures stable gender consistency and increases preci-
sion enhancement. Exp.5, when compared to Exp.3 & Exp.4, illustrates that
combining the three components leads to optimal outcomes.

Fig. 2(b) depicts a diminishing trend in both MAE and gender errors as the
number of graph nodes increases. The optimal values for MAE and gender errors
are reached when the graph nodes reach 16. Beyond this point, as the graph nodes
increase further, MAE displays some fluctuations, while gender errors show an
upward trajectory.

4 Conclusion

Leveraging our expertise, we introduce the pioneering Graph Vision Mamba net-
work for BAA, achieving robust high accuracy with a one-stage, low-annotation,
and computationally efficient approach. GGVMamba effectively integrates the
highly heterogeneous epiphyseal regions, and addresses gender consistency in
bone age X-ray images. Furthermore, GGVMamba enhances the method’s gen-
eralization across three benchmark datasets by employing patch-level data aug-
mentation. Our approach demonstrates superior accuracy, generalization, and
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gender consistency, effectively solving prevalent clinical challenges of low preci-
sion, inefficiency, and frequent domain transfer issues. Future work will further
enhance the model’s zero-shot learning on unseen datasets and explore additional
medical applications.
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