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Abstract. MLP−based networks, while being lighter than traditional
convolution− and transformer−based networks commonly used in medi-
cal image segmentation, often struggle with capturing local structures
due to the limitations of fully−connected (FC) layers, making them
less ideal for such tasks. To address this issue, we design a Dual−Path
MLP−based network (DPMNet) that includes a global and a local branch
to understand the input images at different scales. In the two branches,
we design an Axial Residual Connection MLP module (ARC−MLP) to
combine it with CNNs to capture the input image’s global long−range
dependencies and local visual structures simultaneously. Additionally, we
propose a Shifted Channel−Mixer MLP block (SCM−MLP) across width
and height as a key component of ARC−MLP to mix information from
different spatial locations and channels. Extensive experiments demon-
strate that the DPMNet significantly outperforms seven state−of−the−art
convolution− , transformer−, and MLP−based methods in both Dice
and IoU scores, where the Dice and IoU scores for the IAS−L dataset are
88.98% and 80.31% respectively. Code is available at https://github.
com/zx123868/DPMNet.
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1 Introduction

Intracranial aneurysms (IAS) is a prevalent disease characterized by a signif-
icant mortality risk [1]. However, the intricate and highly variable nature of
these vascular structures demands a high level of expertise in neurovascular
anatomy to achieve accurate segmentation. Consequently, there is a strong de-
mand for an automated computer−aided system to perform the segmentation
of aneurysms, aiming to enhance the early diagnosis rate of aneurysms. The
success of Convolutional Neural Networks (CNNs) in image segmentation can
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be attributed to the inherent local relationships within images, where a pixel
is more strongly connected to its nearby neighbors than those far away. One
notable architecture in this domain is the UNet [11], which is based on an
encoder−decoder structure. Following UNet [11], several significant enhance-
ments like ResUNet [19], AttUNet [8], UNet++ [21], UNet3+ [6], WRANet [20]
and DualANet [18] have been proposed. On top of that, we also aim to have the
capability to capture long−range dependencies. ViT [5] emerged as a ground-
breaking achievement in incorporating transformers into the field of computer
vision (CV). Other transformer−based networks like TransUNet [3], MedT [14],
Swin Transformer [7], and DPC−MSGATNet [9] are also widely used for medical
image segmentation.

Recently, MLP−based networks, being lighter than traditional convolution−
and transformer−based networks, have also been found to be competent in im-
age segmentation. MLP−Mixer [13], as an all MLP−based network, utilizes two
variants of MLP layers: channel−mixing MLPs and token−mixing MLPs, in-
terleaved to facilitate interaction across input dimensions. UNeXt [15] combines
CNNs and MLPs to craft a streamlined model that balances maintaining good
performance with reducing both parameters and computational requirements.
However, MLP−based networks often struggle with capturing local structures
due to the limitations of fully−connected (FC) layers [4]. To address this issue,
we propose DPMNet, which combines convolutional and MLP elements. While
retaining the fundamental encoder−decoder setup of UNet, complete with skip
connections, we use a dual−path structure and adapt the module design for im-
proved performance. Specifically, DPMNet comprises two branches: global and
local. These branches work concurrently, processing both the entire IAS view
and image patches to grasp multi−scale representations. Each branch of DPM-
Net consists of two key stages: the convolutional stage and the Axial Residual
Connection MLP (ARC−MLP) stage. In addition, we use the axial shift strat-
egy in SCM−MLP to introduce a sense of locality to the block [16]. We evaluate
DPMNet on three types of IAS datasets and two public medical datasets, demon-
strating its superior performance compared to the latest generic segmentation
architectures.

Our contributions can be summarized as follows: (1) We propose DPMNet,
a dual−path MLP−based network for aneurysm image segmentation. We de-
sign an Axial Residual Connection MLP (ARC−MLP) module to combine it
with CNNs. This integration allows for the simultaneous capture of both the
input image’s global long−range dependencies and local visual structures. (2)
We design a Shifted Channel−Mixer MLP (SCM−MLP) block to enhance inter-
actions between different channels and locations. (3) Our DPMNet significantly
outperforms seven state−of−the−art methods in both Dice and IoU scores on
five datasets.
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2 DPMNet

The Overall Architecture: As shown in Fig. 1, DPMNet comprises two
branches: global and local. The two branches use an encoder−decoder architec-
ture with two stages: the Convolutional stage and the Axial Residual Connection
MLP stage (ARC−MLP). Each convolutional block has a 3×3 convolutional
layer, a batch normalization layer, and ReLU activation. The ARC−MLP is
composed of four residual connections and two groups of sequentially connected
Shifted Channel−Mixer MLP blocks (SCM−MLP) , operating in the width and
height dimensions, along with DWconv, a MLP, and a normalization layer.
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Fig. 1. The overview of DPMNet and ARC−MLP.

Global/Local branch: To comprehend input images across various scales, we
simultaneously use a global branch and a local branch to capture long−distance
spatial dependencies among image patches and the image’s high−level semantic
details. In the global branch, we removed two layers of convolutional blocks as
we observed that the shifting operation in the SCM−MLP block is sufficient
to capture the image’s local visual structures. In the local branch, the image
is divided into four patches of size I/2 × I/2, where I represents the image’s
original dimensions. Considering to decrease the computational complexity while
giving it good performance, in the local branch we divide the original image into
four patches. Each patch then undergoes individual processing through the local
branch of DPMNet, and the resulting output feature maps are subsequently re-
sampled based on their original locations to derive the final output feature maps.
We adjust the output feature dimensions of both branches to 128×128×32 and
add them together. This merged output is then passed through a 1×1 convolu-
tional layer to produce the final segmentation mask.

Shifted Channel−Mixer MLP Block: To address the challenge that a
fully−connected (FC) layer lacks local context due to the loss of spatial in-
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formation, we use an axial shift strategy in the Shifted Channel−Mixer MLP
block (SCM−MLP). As depicted in Fig. 2, we initiate an axial shift [17] after
padding and chunking the feature map. B, C, H, and W represent the batch
size, number of channels, height, and width of the feature map, respectively. N
denotes the size of the shift. In this context, we’re assuming B = 1, C = 4, and
N = 4. The shift range spans from -2 to 2. This shift strategy enables the MLP
to concentrate on specific locations within the convolutional features, introduc-
ing a sense of locality to the block. This idea is inspired by the Swin Trans-
former [7], which incorporates window−based attention to add greater locality
into a primarily global model. The height and width shift operations facilitate
communication between distinct spatial locations. After the shifting operation,
we concatenate them in a particular dimension. Additionally, drawing inspi-
ration from MLP−Mixer [13], the tokens resulting from these operations are
fed into a channel−mixed MLP after layer normalization. The channel−mixed
MLP comprises two fully connected layers and a GELU nonlinearity, promoting
communication between different channels. In summary, our approach not only
blends information from various spatial locations but also mixes information
across different channels. This dual mixing enhances the feature information,
contributing to a more comprehensive understanding of the data and improved
segmentation accuracy.
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Fig. 2. The architecture of Shifted Channel−Mixer MLP (SCM−MLP) Block.

Axial Residual Connection MLP stage: To capture both global long−range
dependencies within the input image as well as the finer details of its local vi-
sual structures, we design the ARC−MLP to combine it with CNNs [10]. In the
ARC−MLP stage, we first project the features into 1D tokens to facilitate sub-
sequent full connection layer operations. In the tokenization process, we employ
a kernel size of 3 to extract patches, which are then flattened and resized to
match the embedding dimension. These tokens undergo processing through an
SCM−MLP (across width) to reintroduce localization, compensating for the ab-
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sence resulting from the substitution of partial convolution with fully connected
layers. Then we use a depth wise convolutional layer (DWConv) between the
SCM−MLP and the MLP. The role of DWConv is to encode positional infor-
mation within the MLP features in a resource−efficient manner. It allows the
model to understand and represent the spatial relationships of features in a more
streamlined and computationally efficient way, optimizing the network’s perfor-
mance. The MLP feeds tokens that preserve the original features into the fully
connected layer. Followed by a layer normalization (LN), we then pass tokens
through another group of MLP, DWconv, SCM−MLP (across height), and layer
normalization. We add four residual connections behind each of the four MLP
blocks. Finally we pass the output features to the next block.

The computation in the ARC−MLP stage can be summarized as:

XT = Tokenize (X) ;Xshift = SCM −MLPW (XT ) , (1)

Y = f (LN (XT +MLP (DWConv (XT +Xshift)))) , (2)

YT = Tokenize (Y ) ;Yshift = SCM −MLPH (YT ) , (3)

Y = f (LN (YT +MLP (DWConv (YT + Yshift)))) , (4)

where X denotes the original input features, H denotes height, W denotes width,
Tokenize (.) denotes converting input features into tokens that can be fed into
the fully connected layer, SCM -MLP (.) denotes the shifted channel−mixer
MLP, MLP (.) denotes feeding into an MLP layer, DWConv denotes depth−wise
convolution and LN denotes layer normalization.

3 Experiments

Datasets: We adhere to the ethical guidelines outlined in the Declaration of
Helsinki during our research, with approval from the Ethics Committee of the Af-
filiated Hospital of Qingdao University. Our dataset comprises 3D−TOF−MRA
images from 679 patients, consisting of 579 with unruptured cystic aneurysm
(IAS positive) and 100 without (IAS negative). Skilled medical professionals
manually annotated the aneurysms as the ground truth. To assess the model’s
segmentation performance across various aneurysm sizes, we categorized them
into three datasets based on their diameters: IAS−L, IAS−M, and IAS−S. These
categories represent aneurysms with diameters of over 7mm, between 3mm and
7mm, and less than 3mm, respectively. The datasets consist of 1186 images for
IAS−L, 1838 images for IAS−M, and 672 images for IAS−S. Furthermore, we
employed two publicly medical datasets, MSD Lung Tumours [2,12] and MSD
Colon Cancer [2,12], containing 1613 and 1278 images, respectively, to assess the
performance of our DPMNet. The image slices in all datasets were adjusted to
a 256 × 256 size.
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Implementation Details: All networks were implemented based on the Py-
torch framework and our experiments were conducted on NVIDIA 4090 24G
GPUs. We’ve incorporated a combination of binary cross−entropy (BCE) and
dice loss to train DPMNet. The loss L between the predicted ŷ and the target y
is formulated as:

L = 0.4BCE (ŷ, y) + 0.6Dice (ŷ, y) (5)

We use AdamW as our optimizer, starting with a learning rate of 0.0001.
Additionally, we employ the CosineAnnealingLR scheduler, setting a minimum
learning rate of 1e-5. The batch size is fixed at 4. We train DPMNet for a total
of 400 epochs. To evaluate our approach, we employed dice similarity coefficient
(Dice) and Intersection over Union (IoU) as metrics. We conducted three random
80−20 splits on the dataset and calculated the mean and standard deviation of
the results to provide a comprehensive evaluation.

Table 1. Comparative experimental results on the three IAS datasets.

Networks IAS−L IAS−M IAS−S
Dice IoU Dice IoU Dice IoU

UNet [11] 83.25±0.39 73.43±0.43 65.62±0.39 54.11±0.42 50.78±1.00 39.56±1.03
AttUNet [8] 83.57±0.68 73.80±0.62 59.23±1.98 48.09±2.09 51.14±0.65 39.69±0.51
UNet++ [21] 82.01±0.49 72.37±0.43 63.30±0.52 52.11±0.62 49.07±1.02 38.33±0.92
WRANet [20] 83.63±0.08 73.84±0.24 62.95±0.98 51.65±0.76 45.38±0.74 35.14±0.57
DualANet [18] 81.99±1.04 71.90±1.12 66.24±0.20 54.35±0.25 50.22±1.57 38.68±1.44
TransUNet [3] 80.52±0.34 70.88±0.43 60.82±0.88 49.93±0.72 46.63±0.70 35.89±0.74
UNeXt [15] 86.93±0.20 77.24±0.29 72.44±0.70 57.72±0.77 52.30±2.23 36.62±1.87
DPMNet 88.98±0.10 80.31±0.17 79.14±0.18 66.00±0.22 64.55±0.44 48.67±0.39

Comparative Results: To ensure a comprehensive performance assessment,
we selected several SOTA segmentation methods based on different architectural
paradigms: CNN, Transformer, and MLP. UNet [11], AttUNet [8], UNet++ [21],
WRANet [20], and DualANet [18] all belong to the CNN−based category. On
the other hand, TransUNet [3] belongs to the transformer−based models, while
UNeXt [15] represents the MLP−based models. Table 1 records the results of
the comparative experiments conducted on the three IAS datasets, while Table 2
presents the results obtained from the two public datasets. It’s obvious that our
proposed DPMNet significantly outperforms all other SOTA methods in both
Dice and IoU scores.

In comparison to the baseline model UNet [11], our DPMNet exhibited im-
provements in Dice scores by 5.73%, 13.52%, and 13.77%, and in IoU scores
by 6.88%, 11.89%, and 9.11%, across the three IAS datasets. Likewise, when
compared to UNet [11] on the MSD Lung Tumours dataset [2,12] and the MSD
Colon Cancer dataset [2,12], DPMNet yields increased Dice scores by 8.44%
and 9.93%, and higher IoU scores of 11.8% and 11.97%. For the IAS−S dataset
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Table 2. Comparative experimental results on the MSD Lung Tumours dataset and
the MSD Colon Cancer dataset.

Networks Params GFLOPs MSD Lung Tumours [2,12] MSD Colon Cancer [2,12]
(in M) Dice IoU Dice IoU

UNet [11] 34.53 262.09 82.64±0.39 73.93±0.31 72.30±0.63 61.00±0.70
AttUNet [8] 34.88 266.53 82.95±0.21 74.31±0.25 71.96±0.91 60.97±1.01
UNet++ [21] 9.16 139.61 84.14±1.02 75.42±0.12 75.24±0.35 63.98±0.27
WRANet [20] 34.88 267.16 83.15±0.51 74.79±0.46 71.95±0.17 60.59±0.19
DualANet [18] 2.58 22.04 80.48±1.78 71.20±2.01 67.90±0.40 55.64±0.42
TransUNet [3] 93.23 228.91 79.76±0.84 71.06±0.76 66.17±1.43 54.76±1.10
UNeXt [15] 1.47 2.29 90.25±0.20 82.53±0.29 80.98±0.13 68.52±0.19
DPMNet 31.72 33.6 91.08±0.05 83.86±0.09 84.10±0.18 72.97±0.25

which aneurysm diameters less than 3mm, the UNet++ [21], TransUNet [3],
and WRANet [20] methods displayed subpar segmentation performance as they
struggled to capture detailed representations in smaller tumor regions. On the
other four datasets, the TransUNet [3] model achieves the worst performance,
possibly because of its heavy reliance on vast data for feature learning, lead-
ing to challenges in accurately delineating tumor boundaries. In contrast, our
DPMNet demonstrated adaptability to different diameters and types of tumors,
attributed to long−range and local feature information extraction provided by
the dual−path structure and the ARC−MLP module. Fig. 3 presents compar-
ative experimental results on the IAS−L dataset. To enhance the visualization
of the differences between the comparative models’ predictions, we cropped the
images and adjusted the masks to occupy a larger proportion of the images.

Image GT Enlarged GT DPMNet UNeXT TransUNet DualANet WRANet UNet++ AttUNet UNet

Fig. 3. Comparative experimental results on the IAS−L dataset.

4 Discussion

Ablation Study: To analyze the contributions of each component in our
DPMNet, we conducted detailed ablation studies focusing on the SCM−MLP
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block and branches. The results presented in Table 3 reveal that incorporating
the SCM−MLP block in DPMNet enhances segmentation performance on the
IAS−L dataset, exhibiting improvements of 0.35% in Dice and 0.42% in IoU
score compared to DPMNet without SCM−MLP. This underscores the signifi-
cance of the SCM−MLP block in effectively integrating feature information from
diverse spatial locations and channels. Furthermore, DPMNet surpasses the per-
formance of both the local and global branches individually. Specifically, the
Dice scores improve by 0.69% and 0.28%, while IoU scores see enhancements of
1.02% and 0.24%, respectively. This signifies that DPMNet captures more com-
prehensive representations by combining global context and local visual cues,
outperforming a single−branch approach. The ablation study reinforces the no-
tion that each component of DPMNet contributes meaningfully to enhancing
overall performance.

Table 3. Ablation studies on the IAS−L dataset.

Model Params(in M) GFLOPs Dice IoU
Local Branch 20.49 31.43 88.29±0.15 79.29±0.23
Global Branch 9.4 30.9 88.70±0.18 80.07±0.16

DPMNet w/o SCM−MLP 3.01 28.18 88.63±0.10 79.89±0.13
DPMNet 31.72 33.6 88.98±0.10 80.31±0.17

5 Conclusions and Future Works

In this paper, we proposed a new deep dual−path network architecture DPMNet
for improving aneurysm segmentation performance, which can assist clinicians
in analazing aneurysm morphology and promote IAS diagnosis. We incorpo-
rated an Axial Residual Connection MLP (ARC−MLP) module and a Shifted
Channel−Mixer MLP (SCM−MLP) block to enhance extraction of semantic in-
formation. Experimental results demonstrate the effectiveness of our approach
in achieving state−of−the−art performance.

Regarding limitations, our DPMNet relies on labeled data for supervised
training. Typically, annotating the IAS views’ data is intricate and demands
considerable time from experienced cardiologists. In the future, we aim to adopt
a semi−supervised approach for training the model, significantly lessening our
dependence on labeled data.
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