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Abstract. Automated semantic segmentation in colonoscopy is crucial
for detecting colon polyps and preventing the development of colorectal
cancer. However, the scarcity of annotated data presents a challenge to
the segmentation task. Recent studies address this data scarcity issue
with data augmentation techniques such as perturbing data with adver-
sarial noises or using a generative model to sample unseen images from a
learned data distribution. The perturbation approach controls the level
of data ambiguity to expand discriminative regions but the augmented
noisy images exhibit a lack of diversity. On the other hand, generative
models yield diverse realistic images but they cannot directly control
the data ambiguity. Therefore, we propose Diffusion-based Adversarial
attack for Semantic segmentation considering Pixel-level uncertainty
(DASP), which incorporates both the controllability of ambiguity in ad-
versarial attack and the data diversity of generative models. Using a hi-
erarchical mask-to-image generation scheme, our method generates both
expansive labels and their corresponding images that exhibit diversity
and realism. Also, our method controls the magnitude of adversarial at-
tack per pixel considering its uncertainty such that a network prioritizes
learning on challenging pixels. The effectivity of our method is exten-
sively validated on two public polyp segmentation benchmarks with four
backbone networks, demonstrating its superiority over eleven baselines.

Keywords: Adversarial Attack - Data Augmentation - Semantic Seg-
mentation.

1 Introduction

Semantic segmentation plays a pivotal role in medical imaging by precisely de-
lineating anatomical structures or pathological regions such as cells [22] and
tumors [1,14]. In a colonoscopy, polyps are often found which are potential pre-
cursors to colorectal cancer if left untreated [18,26]. Therefore, accurate and
early detection of polyps is vital to prevent the development of life-threatening
cancer. Recent deep neural networks (DNNs) have shown their effectiveness in
polyp detection [31] and segmentation [10,34]; however, training such DNNs re-
quires costly large-scale data with per-pixel labels meticulously annotated by
medical professionals.
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To address data scarcity, image synthesis methods have been developed in
two-fold: augmentation and generative DNNs. Augmentation methods transform
or perturb existing data in various ways. For example, cropping-based methods |7,
12, 38] remove parts of images or feature maps, and geometric transformations
[28] deform the shape of objects within an image, which may drop early-stage
polyps which are tiny and often indistinguishable from the background intestinal
wall. Noise injection [3,6] such as adversarial attacks preserve the morphological
characteristics of objects. The attack provides challenging samples by adding
small yet tricky noises to images that maximize a training objective to deceive a
DNN, and the network improves in an effort to defend against the attacks [21,35].
While the level of ambiguity in attacked data (i.e., augmented data) can be
controlled, their diversity is limited as the perturbed images are semantically
similar to the originals. Conversely, generative models such as GANs [13], VAEs
[20], and diffusion models [11,15, 16, 23] produce diverse and realistic samples
from a learned data distribution. However, unlike the adversarial attack, these
generative models cannot sensitively control the ambiguity of the sampled data.

In this regard, we propose a novel image synthesis method for semantic seg-
mentation that inherits advantages of the controllability of adversarial attacks
and the diversity of generative models. Our method first generates pixel-level an-
notations and their corresponding images sequentially, using two separate gen-
erative models. As these samples are novel yet not crafted to be challenging,
they are perturbed to deceive a network by the adversarial attack. During the
attack, our approach adjusts the strength of pixel-wise attacks considering their
uncertainty to enable the network to better learn ambiguous regions. Specifi-
cally, challenging pixels such as pixels of object edges are strongly perturbed
compared to those of inner polyps (i.e., easily predictable pixels) such that a
network prioritizes learning the challenging regions by minimizing supervised
loss. These attacked samples with small noises are further denoised by a down-
stream diffusion scheme, thereby improving their realism and belonging to the
pixel manifold. Consequently, our method ultimately generates novel and realis-
tic samples that make a network prioritize learning from challenging pixels.

Our main contributions are summarized as follows: 1) Our method han-
dles the data scarcity issue for medical images by generating pairs of expensive
pixel-level labels and their corresponding images. 2) The generated images are
challenging and diverse as our method effectively combines the adversarial attack
to control data ambiguity and the generative networks to secure data diversity.
3) The strength of the adversarial attack is adjusted based on the uncertainty
of the pixels, allowing a network to better learn ambiguous regions such as ob-
ject edges. Extensive validations on two public benchmarks with four different
backbones demonstrate the effectiveness of our method on polyp segmentation.

2 Preliminary: Diffusion-based Adversarial Attack

Fig. 1a shows the effect of an adversarial attack using Projected Gradient Descent
(PGD) [21]. Given a pixel p, of an image z and a maximum noise strength
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Fig. 1: (a) Adversarial attack using PGD. (b) PGD with SDEdit. (¢) PGD with SDEdit
considering per-pixel uncertainty.

v, PGD iteratively adds noise to the data that maximize a training objective
L as (p.)f = Hle((pz)k_l + vsign(V(p, k-1 L)) for K perturbation steps,
where (p;)" = p,. This iterative attack yields adversarial data lying beyond the
network’s decision boundary. Also, because of the added noises, the perturbed
data contain small artifacts and thus deviate from the natural pixel manifold [37].

To remove the artifacts, authors in [35] proposed Diffusion-based PGD (Dift-
PGD) that uses Stochastic Differential Editing (SDEdit). SDEdit diffuses an ad-
versarial pixel (p,)¥ for T'® steps using a forward diffusion and yields (p;)%.. Sub-
sequently, reverse denoising process Ry parameterized by ¢ produces an edited
adversarial data (px)lg lying on the natural pixel manifold as in Fig. 1b as follows

(pz)§ = SDEdit((p2)", T%) = Ry(...Rs(Re((px)s, T°), T° — 1)...,0). (1)

Unlike PGD and Diff-PGD which add noises to the given image x, our method
first samples an unseen image Z from a learned data distribution and perturbs
it to secure data diversity. Also, our method allows a segmentation model to
intensively learn ambiguous pixels by assigning different perturbation weights
to each pixel based on its ambiguity. Fig lc illustrates that higher weights are
assigned to uncertain pixels (e.g., p2 at object edges) compared to easier cases
(e.g., p. in inner object regions). As a result, a segmentation network highly
prioritizes learning from these ambiguous regions by minimizing a supervised
loss such that the ultimate segmentation quality is improved.

3 Method

Our method aims to generate image and mask pairs for medical image segmenta-
tion. It follows these steps: 1) First, we train a Bernoulli diffusion model [5, 33]
for mask generation and a mask-conditioned Gaussian diffusion model [8] for
image generation. 2) To yield challenging data that improve the robustness of a
segmentation model, diffusion-based adversarial attack is applied on the gener-
ated images considering per-pixel uncertainty. 3) Finally, a segmentation model
is trained on both the original and augmented data using a supervised loss.
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3.1 Mask Generation with Bernoulli Diffusion Process

Let y € R”*W be a ground truth mask with binary values {0,1}, where each
pixel is a polyp (1) or background (0). To generate masks, we use a Bernoulli
diffusion process [33], which is tailored for binary data generation using discrete
Bernoulli noise as a diffusion kernel. For T diffusion timesteps, a forward diffusion
process ¢ (+) gradually adds Bernoulli noise to y using a noise scale 3; as follows

T T
@ wir lyo) =[d" Wi lvi) =[[Bws (1 =B)y,+8:/2), (2
t=1 t=1

where B is a Bernoulli distribution and y, = y. The ¢™(-) yields a complete
Bernoulli noise y,~B(y; % -1), where 1 is an all-one matrix with the same size
of y. Based on a reparameterization trick [20], y, is directly sampled from y, as

" (y, | yo) = B (ys; Beyo + (1 — B)/2), 3)

where §; := szl(l — Bs). From Eq. (3), Bernoulli noise ¢; applied to y, is
defined as ¢, = y, ® y, ~ Bles; 1_2’8‘ - 1), where @ is an ‘exclusive or’ operator.

Given yr, a reverse diffusion process pé\/[ (+) is defined as a Markov process as

T T
o’ (Yo.r) = p (yr H (Yemr L 9e) =2 (ur) [[ Bwiorime(y, 1), (4)
t=1

where the 14(y,, t) is determined by a neural network ey (y,, t) [33]. The €y (y;, )
is trained to estimate the noise ¢; using a binary cross entropy loss fp.. as

£1W = Et,yo,ythM('ytlyg) [Zbce (yt @ Yo €0 (yt7 t))} . (5)

In the sampling process, unseen masks ¢ are sampled from the learned distribu-
tion in Eq. (4). The generated mask ¢ is further used as a condition to sample
unseen polyp images in the following conditional generative model.

3.2 Image Generation with Mask-conditioned Gaussian Diffusion

To generate polyp images, a conditional diffusion process is performed on the
given image x € RE*XW>3_ A forward diffusion ¢/(-) is similar to Eq. (2) but
uses Gaussian noises instead of Bernoulli noise for 7" diffusion steps as

T’ T’
q' (xr7 | o) 1= qu (@ | Ti-1) = HN (mt; V1= ﬁémt—hﬁél) ; (6)
t=1 t=1

where ¢g = x and i is the variance of Gaussian noise distribution N (+).
During training, the reverse process pé() is conditioned on the original
ground truth mask y to generate paired polyp images as follows:

e T’

pé(@or|y) = p(@r) [ [ pé(@e—1 | e, y) i= plar) [ [N (@em1; 1o (@i, y, 1), 07T), (7)

t=1 t=1
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Fig. 2: Overview of DASP. Given a sampled data pair {&, §}, PGD attack with SDEdit
is iteratively performed on the image for K steps. The adversarial attack loss Lgqy is
weighted by the uncertainty map W and thus pixel-wise attack magnitude is controlled
to derive the adversarial noise 7". A segmentation network f(-) is trained on both the
perturbed and the given data to enhance robustness in classifying ambiguous regions.

where pg(x;,y,t) is determined by a neural network ey (¢, y,t) [15] and oy is
determined by ;. As in Eq. (5), the €4(x¢, y,t) is trained to estimate Gaussian
noise €} applied to the x; using a mean squared error loss as follows

£ = Bygy oo |16t = o (@, 0)]*] (8)

In the sampling process, we use the generated mask y as a condition such that
a realistic and novel image & paired with ¢ is generated by Eq. (7).

3.3 Diffusion-based Attack considering Pixel-wise Uncertainty

As shown in Fig. 2, our method performs an iterative adversarial attack using
PGD [21] on the generated image 2 = & for K perturbation steps. For k =
0,..., K — 1 steps, the image at (k + 1)-th perturbation "t is defined as

jk+1 = ik + Tk = (ik + ’ySign(vik»cade (9)

where 7% € RE*XWx3 ig an adversarial noise whose element is smaller than the

threshold v (i.e., |7F| < v, s.t. i = 1,..., HxW x3). By adding a noise 7" to the
image, the perturbed data z" is pushed beyond the network’s decision boundary.
Note that, as the noise does not necessarily push the image onto the natural pixel
manifold, the &* contains noisy artifacts that make the image unnatural.

To obtain a seamless image, the &* is further refined to remove artifacts
while still remaining beyond the decision boundary. This is realized by applying
the reverse denoising process Ry of SDEdit [35] as in Eq. (1). With a pretrained
conditional diffusion model e, (&F,§,t) used for the image generation (in Sec-
tion 3.2), SDEdit denoises &. for T diffusion steps such that the resultant
denoised image &5 ~ p(&) is yielded within the realistic data distribution p(&).

To derive the noise 7% = argmax, L,q, that deceives a segmentation network
f(), the adversarial loss Lyg, is defined to reduce the difference between the
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network prediction P* = sigmoid(f(zF)) and a mask ¢ as follows

. Sk 3 1 HxW R . -
wtn (PR 9 W) = 7 ; [yi X Wi X loce ((P )y)] (10)

where W is an uncertainty map that contains pixel-wise weights emphasizing
per-pixel uncertainty. As we aim to train the f(-) that robustly discriminates
uncertain regions (e.g., object edges), the uncertainty map is calculated as W =
g(f(&)) with a zero-mean Gaussian function g(-). With the ¢(-), ambiguous pixels
where the network output (before sigmoid) is close to 0 are significantly attacked
via maximizing the L,q,. Fig. 2 shows that W assigns high weights to uncertain
edge pixels, while weights are relatively low for the inner object regions.

3.4 Training a Segmentation Network

Finally, N number of the original data pairs {z,,y,}Y_; and N’ augmented
data pairs {;ngn,,gn,}ﬁ,':l are combined into a unified training set. Given a
Dice loss [30] /() and a sigmoid function o(-), the network f(-) is trained on this
dataset by minimizing a supervised loss L, which is defined as follows

Loup = 3y 2o (o)) + 57 3 Ul @) 90) (1)

n’/=1

4 Experiment

4.1 Experimental Setup

Dataset. We conducted experiments on two public polyp segmentation datasets:
Kvasir-SEG [19] and ETIS-Larib Polyp DB (ETIS) [27]. These datasets contain
1000,/196 images with corresponding pixel-wise labels. As in [6,10,29,32], we split
train/validation/test sets into 80%/10%/10%. For all augmentation methods, we
augmented data by doubling the number of training data (i.e., N' = 2N).
Implementation. DASP was trained using Adam optimizer with learning rates
of 4e-3/1e-4 (Kavsir-SEG /ETIS) for 200 epochs and a batch size of 16. To gener-
ate {Z, g}, we followed settings in [8,33]. PGD steps K, noise strength v, SDEdit
timesteps T, and the variance of ¢(-) were set to 10, 1, 3, and 4, respectively. To
assess the generalizability of DASP, we used 4 backbone networks: U-Net [24],
U-Net-++ [40], LinkNet [2], and DeepLabv3+ [4]. Codes will be released online.
Baselines & Evaluation. Along with a typical augmentation method (e.g.,
random horizontal and vertical flipping denoted as ‘Basic’ in Table 1), recent
methods such as CutMix [38], CutOut [7], Elastic Transform [28], Random Erase
[39], DropBlock [12], Gaussian Noise Training (GNT) [25], Logit Uncertainty
(LU) [17], Tumor Copy-Paste (TumorCP) [36] and Anti-Adversarial Consistency
regularization (AAC) [6] were used as baselines. We also compared DASP with a
diffusion-based augmentation method, ArSDM [9]. As evaluation metrics, mean
Intersection over Union (mlIoU) and mean Dice coefficient (mDice) were used.
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Table 1: Segmentation performance of DASP and baseline methods. The best result

is marked in bold and the second-best result is indicated by an underline.
U-Net  JU-Net{+ [ LinkNet [DeepLabv3+] TU-Net [U-Net+ ] LinkNet [DeepLabv3+

Method

mloU | mDice
Kvasir-SEG

No Aug. ST76 | 6313 7302 85.75 3629 7475 8500 3965
Basic S7.05 8850 | 8807 89.02 93.50 93.05 92.16 94.60
CutMix [38] 86.73 89.35 | 88.31 91.84 92.90 9437 | 93.79 95.75
CutOut [7] 89.05 89.33 | 89.11 91.64 94.21 94.36 94.24 95.64
Elastic Trans. [28] | 87.09 88.64 | 88.06 91.91 93.10 93.98 93.65 95.79
Random Erase [39] | 90.28 90.92 | 89.92 91.57 94.89 94.08 94.69 95.60
DropBlock [12] 91.15 90.57 | 91.08 91.36 95.37 | 95.10 95.48 95.48
GNT [25] 88.04 87.09 | 89.80 89.32 93.64 | 93.10 94.63 94.36

LU [17] 86.16 80.47 | 89.14 91.20 9257 | 9444 | 94.26 95.40
TumorCP [36] 90.99 91.40 | 89.14 91.24 9524 | 95.51 94.26 95.42
AAC [6] 9157 | 89.21 89.87 90.83 95.60 94.30 94.67 95.20
ArSDM [9] 92.22 9210 | 91.96 92.02 95.59 95.89 95.81 95.85
DASP (O 93.10 | 93.06 | 93.05 92.98 96.43 | 96.41 | 96.40 96.36
(Ours) | ("o88) | (10.96) | (11.09) | (+0.96) | (+0.83) | (+0.52) | (+0.59) | (10.51)

ETIS

No Aug. S350 S306 | SIS 8252 9IS 9108 9092 90.43
Basic S7.63 8721 35.70 6.41 9341 93.17 | 02.30 92.71
CutMix [38] 87.67 | 88.65 | 85.69 86.06 9354 | 93.98 92.30 92,51
CutOut [7] 87.67 | 88.08 | 85.69 86.61 93.43 93.66 92.29 02.83
Elastic Trans. [28] | 87.27 | 86.79 | 85.70 86.05 93.20 92.93 91.30 92.50
Random Erase [39] | 85.69 86.55 | 85.55 85.64 92.30 92.79 92.21 92.27
DropBlock [12] 85.70 85.69 | 85.60 85.76 92.30 92.30 92.30 92.33
GNT [25] 85.69 88.10 | 85.62 88.41 92.30 93.67 | 92.25 93.85

LU [17] 85.69 85.69 | 85.60 86.88 92.30 92.30 92.30 02.98
TumorCP [36] 86.41 85.95 | 85.48 86.23 92.71 92.45 92.17 92.60
AAC [6] 89.05 88.02 | 85.60 86.28 94.21 94.13 92.30 02.64
ArSDM 9] 87.69 87.49 | 85.83 86.38 93.44 | 93.33 92.38 92.69
ASP (O 90.17 | 89.54 | 86.08 89.28 94.83 | 94.48 | 902.52 94.34
DASP (Ours) | (4119) | (10.62) | (10.25) | (10.87) | (10.62) | (+0.35) | (10.14) | (+0.49)

Table 2: Ablation study on the mask type, attack method, and uncertainty map W.
The results were obtained from the Kvasir-SEG experiment.

Method U-Net U-Net++
Mask type  Attack method w mloU mDice mloU mDice
Yy X X 92.22 95.59 92.10 95.89
1] X X 92.66 96.19 92.39 96.05
Y PGD v 92.88 96.31 92.79 96.26
Y Diff-PGD X 92.68 96.20 92.81 96.27
Y Diff-PGD v 93.10 96.43 93.06 96.41

4.2 Quantitative Results

Comparison with baselines. As shown in Table 1, DASP surpasses all base-
line approaches in all configurations with a maximum improvement of 1.09%p
and 1.12%p in mIoU over the second-best results on the Kvasir-SEG and ETIS
datasets, respectively. Notably, our method augments data from the real-world
pixel manifold that resemble the given data, while geometric transformations
[28, 36], cropping-based methods [7,12, 36, 38, 39], and noise injection meth-
ods [6,25] yield data out of the natural pixel manifold. Also, by generating
both masks and images, our method synthesizes more diverse data compared to
a diffusion-based method [9] which only generates images for the original masks.
Ablation study. Ablation study results on the mask generation, attack method,
and uncertainty map W are reported in Table 2. Using a generated mask y
improved mloU over using a given mask y by 0.44%p and 0.29%p for U-Net and
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Fig. 3: Visualization of generated samples from DASP on the Kvasir-SEG.
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Fig. 4: Segmentation results of different models on the Kvasir-SEG test dataset.

U-Net++ backbones, respectively. For the adversarial attack, both PGD and
Diff-PGD outperformed the experiments without attacks; however, Diff-PGD
(in the 5th row) showed better results than PGD (in the 3rd row) as Diff-PGD
allows a segmentation model to learn augmented data resembling real-world
samples. Additionally, using the pixel-wise uncertainty map W (in the 5th row)
consistently outperformed experiments without W (in the 4th row), indicating
the effectivity of adjusting the attack magnitude based on per-pixel uncertainty.

4.3 Qualitative Results

The generated data {Z,g} in Fig. 3 show the effectivity of our hierarchical
mask-to-image generation scheme in producing diverse and realistic data. While
PCD-attacked data & exhibit noisy artifacts, our method with SDEdit &f gen-
crates seamless images. The difference between & and &{ is easily observed in
high-resolution, as reported in the supplementary material. Given the input a"cé( ,
the network struggles to accurately predict ambiguous edge pixels, as indicated
by the red circles in network prediction Pk, By minimizing Lg,,, the network
focuses its learning on accurately classifying these challenging regions, leading
to superior performance over various baselines as demonstrated in Fig. 4.
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5 Conclusion

We propose a novel image augmentation method for semantic segmentation in
medical images by perturbing data with diffusion-based adversarial attack con-
sidering per-pixel uncertainty. By controlling the strength of the adversarial at-
tack based on per-pixel uncertainty, our method enables a segmentation net-
work to focus on discriminating ambiguous pixels such as edge regions. Further-
more, our mask-to-image generative scheme generates both expansive pixel-wise
annotations and corresponding images. Extensive experiments across multiple
datasets and backbone networks validate the effectiveness of our method.

Acknowledgments. This research was supported by NRF-2022R1A2C2092336 (60%),
RS-2022-112202290 (30%), RS-2019-11191906 (AI Graduate Program at POSTECH,
10%).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Biratu, E.S., et al.: A survey of brain tumor segmentation and classification algo-
rithms. Journal of Imaging 7(9), 179 (2021)

2. Chaurasia, A., et al.: Linknet: Exploiting encoder representations for efficient se-
mantic segmentation. In: IEEE Visual Communications and Image Processing.
pp. 1-4. IEEE (2017)

3. Chen, C., et al.: Realistic adversarial data augmentation for mR image segmen-
tation. In: International Conference on Medical Image Computing and Computer
Assisted Intervention. pp. 667—-677. Springer (2020)

4. Chen, L.C., et al.: Encoder-decoder with atrous separable convolution for semantic
image segmentation. In: European Conference on Computer Vision. pp. 801-818
(2018)

5. Chen, T., et al.: Berdiff: Conditional bernoulli diffusion model for medical im-
age segmentation. In: International Conference on Medical Image Computing and
Computer Assisted Intervention. pp. 491-501. Springer (2023)

6. Cho, H., et al.: Anti-adversarial consistency regularization for data augmentation:
Applications to robust medical image segmentation. In: International Conference
on Medical Image Computing and Computer Assisted Intervention. pp. 555-566.
Springer (2023)

7. DeVries, T., et al.: Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552 (2017)

8. Dhariwal, P., et al.: Diffusion models beat gans on image synthesis. Advances in
Neural Information Processing Systems 34, 8780-8794 (2021)

9. Du, Y., et al.: ArSDM: colonoscopy images synthesis with adaptive refinement se-
mantic diffusion models. In: International Conference on Medical Image Computing
and Computer Assisted Intervention. pp. 339-349. Springer (2023)

10. Fan, D.P., et al.: Pranet: Parallel reverse attention network for polyp segmentation.
In: International Conference on Medical Image Computing and Computer Assisted
Intervention. pp. 263-273. Springer (2020)



10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

M. Jeong et al.

Frisch, Y., et al.: Synthesising rare cataract surgery samples with guided diffusion
models. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. pp. 354-364. Springer (2023)

Ghiasi, G., et al.: Dropblock: A regularization method for convolutional networks.
Advances in Neural Information Processing Systems 31 (2018)

Goodfellow, I., et al.: Generative adversarial nets. Advances in Neural Information
Processing Systems 27 (2014)

Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Medical
Image Analysis 35, 18-31 (2017)

Ho, J., et al.: Denoising diffusion probabilistic models. Advances in Neural Infor-
mation Processing Systems 33, 6840-6851 (2020)

Hu, X., et al.: Conditional diffusion models for weakly supervised medical im-
age segmentation. In: International Conference on Medical Image Computing and
Computer Assisted Intervention. pp. 756-765. Springer (2023)

Hu, Y., et al.: Data augmentation in logit space for medical image classification
with limited training data. In: International Conference on Medical Image Com-
puting and Computer Assisted Intervention. pp. 469-479. Springer (2021)

Huck, M.B., et al.: Colonic polyps: diagnosis and surveillance. Clinics in Colon and
Rectal Surgery 29(04), 296-305 (2016)

Jha, D.; et al.: Kvasir-seg: A segmented polyp dataset. In: MultiMedia Modeling.
pp. 451-462. Springer (2020)

Kingma, D.P., et al.: Auto-encoding variational bayes. International Conference on
Learning Representations (2013)

Madry, A., et al.: Towards deep learning models resistant to adversarial attacks.
International Conference on Learning Representations (2018)

Meijering, E.: Cell segmentation: 50 years down the road [life sciences|. IEEE Signal
Processing Magazine 29(5), 140-145 (2012)

Peng, W., et al.: Generating realistic brain mris via a conditional diffusion prob-
abilistic model. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 14-24. Springer (2023)

Ronneberger, O., et al.: U-net: Convolutional networks for biomedical image seg-
mentation. In: International Conference on Medical Image Computing and Com-
puter Assisted Intervention. pp. 234—241. Springer (2015)

Rusak, E., et al.: A simple way to make neural networks robust against diverse im-
age corruptions. In: European Conference on Computer Vision. pp. 53-69. Springer
(2020)

Shussman, N.; et al.: Colorectal polyps and polyposis syndromes. Gastroenterology
Report 2(1), 1-15 (2014)

Silva, J., et al.: Toward embedded detection of polyps in wce images for early diag-
nosis of colorectal cancer. International Journal of Computer Assisted Radiology
and Surgery 9, 283-293 (2014)

Simard, P.Y., et al.: Best practices for convolutional neural networks applied to
visual document analysis. In: International Conference on Document Analysis and
Recognition. vol. 3 (2003)

Srivastava, A., et al.: MSRF-Net: a multi-scale residual fusion network for biomedi-
cal image segmentation. IEEE Journal of Biomedical and Health Informatics 26(5),
2252-2263 (2021)

Sudre, C.H., et al.: Generalised dice overlap as a deep learning loss function for
highly unbalanced segmentations. In: Deep Learning in Medical Image Analysis
and Multimodal Learning for Clinical Decision Support. pp. 240-248. Springer
(2017)



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

DASP 11

Tajbakhsh, N., et al.: Automated polyp detection in colonoscopy videos using shape
and context information. IEEE Transactions on Medical Imaging 35(2), 630-644
(2015)

Wang, J., et al.: Stepwise feature fusion: Local guides global. In: International
Conference on Medical Image Computing and Computer Assisted Intervention.
pp. 110-120. Springer (2022)

Wang, Z., et al.: Binary latent diffusion. In: Conference on Computer Vision and
Pattern Recognition. pp. 2257622585 (2023)

Wei, J., et al.: Shallow attention network for polyp segmentation. In: International
Conference on Medical Image Computing and Computer Assisted Intervention. pp.
699-708. Springer (2021)

Xue, H., et al.: Diffusion-based adversarial sample generation for improved stealth-
iness and controllability. Advances in Neural Information Processing Systems 36
(2024)

Yang, J., et al.: TumorCP: A simple but effective object-level data augmentation
for tumor segmentation. In: International Conference on Medical Image Computing
and Computer Assisted Intervention. pp. 579-588. Springer (2021)

Yoon, J., et al.: Adversarial purification with score-based generative models. In:
International Conference on Machine Learning. pp. 12062-12072. PMLR (2021)
Yun, S., et al.: Cutmix: Regularization strategy to train strong classifiers with
localizable features. In: International Conference on Computer Vision. pp. 6023—
6032 (2019)

Zhong, Z., et al.: Random erasing data augmentation. In: AAAI Conference on
Artificial Intelligence. vol. 34, pp. 13001-13008 (2020)

Zhou, Z., et al.: Unet+-+: A nested u-net architecture for medical image segmen-
tation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support. pp. 3-11. Springer (2018)



	Uncertainty-aware Diffusion-based Adversarial Attack for Realistic Colonoscopy Image Synthesis

