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Abstract. Teeth alignment plays an important role in orthodontic treat-
ment. Automating the prediction of teeth alignment target can signifi-
cantly aid both doctors and patients. Traditional methods often utilize
rule-based approach or deep learning method to generate teeth alignment
target. However, they usually require extra manual design by doctors, or
produce deformed teeth shapes, even fail to address severe misalignment
cases. To tackle the problem, we introduce a pose prediction model which
can better describe the space representation of the tooth. We also con-
sider geometric information to fully extracted features of teeth. In the
meanwhile, we build a multi-scale Graph Convolutional Network(GCN)
to characterize the teeth relationships from different levels (global, local,
intersection). Finally the target pose of each tooth can be predicted and
so the teeth movement from the initial pose to the target pose can be ob-
tained without deforming teeth shapes. Our method has been validated
in clinical orthodontic treatment cases and shows promising results both
qualitatively and quantitatively.
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1 Introduction

Teeth alignment is a critical concern in dentistry, satisfying the human require-
ment to become more beautiful and healthy [2]. As a result, the demand for
orthodontic treatment is rising dramatically. In orthodontic treatment, the de-
termination of the teeth alignment target is crucial, as it directly determines the
subsequent treatment plans and the design of the orthodontic appliance. While
computer-aided modeling techniques such as intra oral scans have revolutionized
the field of orthodontics and provided increased patient comfort, they do require
substantial time commitment from doctors and orthodontists to determine teeth
alignment target. Therefore, it is essential to develop a fully automated system
⋆ The corresponding author is Dian Zhang.
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to determine an optimal teeth arrangement target. A system like this would
not only alleviate the burden of manual operations for dentists but would also
enhance the communication effectiveness with patients, by allowing patients to
envisage the results of their future dental arrangements.

Existing methods to address this challenge can be roughly divided into three
categories: 1) Automatic teeth alignment based on expertise rules. These meth-
ods usually require extensive manual intervention from doctors, and typically
require prior information such as teeth landmarks. Cheng et al. [5] propose an
accurate teeth arrangement system with complete teeth model. But, this system
requires manual intervention from doctors to set the alignment target of in-
cisors. Deng et al. [7] propose an automatic approach for maxilla and mandible
alignment. However this alignment requires many pre-defined teeth landmarks.
2) Automatic teeth alignment based on generative model. These methods are
mainly used for 2D images, with some designed for 3D models that don’t need
any pre-segmentation of teeth. However, this approach might lead to severe dis-
tortions in the 3D models of teeth. Chen et al. [4] present a method to predict the
visual outcome of orthodontic treatment in a portrait image via latent style code
manipulation. Yang et al. [11] propose a system which takes a frontal face image
of a patient along with a corresponding 3D teeth model as input and generates
a facial image with aligned teeth. Zhang et al. [17] present the first paramet-
ric 3D morphable dental model for both teeth and gum which can be used to
smoothly interpolate between pre-orthodontic teeth and post-orthodontic teeth.
However, the size and shape of the teeth might be changed during interpolation.
3) Automatic teeth alignment based on regressing the transformaion matrices
for each tooth. PSTN [10] proposed by Li et al. inspired by [9] uses PointNet [12]
and PointNet++ [13] for global and local features extraction and then directly
regresses the transformation matrices. TANet [16] proposed by Wei et al. uses
graph-based feature propagation module to update features extracted by Point-
Net [12] to solve the 6-DOF pose prediction problem of each tooth. Wang et al.
[14] uses anatomical landmark constraints to improve tooth alignment results in-
stead of directly regressing tooth motion. However, these methods require pairs
of pre-orthodontic and post-orthodontic teeth models to train the model and it
is difficult to handle severe misalignment cases.

In order to address aforementioned challenges, we propose a system named
TAPoseNet, which can fully automate the prediction of post-orthodontic teeth
alignment target without any deformation of teeth. TAPoseNet includes a Teeth
Pose Estimation module based on DGCNN [15] to explicitly estimate the pose
of each tooth in dental arch, paired with a Geometric Information Extraction
Module that extracts each tooth’s geometric information. Afterwards the ex-
tracted features are fed into Teeth alignment target prediction module to predict
the post-orthodontic pose of each tooth. Finally, transformation matrices from
pre-orthodontic poses to post-orthodontic poses are used for transitioning the
pre-orthodontic teeth to the predicted post-orthodontic arrangement.

The contributions of our work are as follows: 1) We present a method to au-
tomatically predict the post-orthodontic teeth alignment target based on initial
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teeth pose estimation and target teeth pose prediction, without deforming teeth
shapes. 2) To the best of our knowledge, we introduce the first deep learning
based method to estimate the pose of teeth, which can better describe the space
representation of the tooth and contribute to the prediction of post-orthodontic
teeth arrangement target with clinical interpretability. 3) We build a multi-scale
Graph Convolutional Network (GCN) to characterize the spatial relationships
of teeth in multi-scale from different levels (global, local, intersection).

2 Method

TAPoseNet is composed of two major components: 1) Teeth features extraction
module and 2) Teeth alignment target prediction module. (Fig. 1)

Fig. 1. The overall network architecture of our method.

The central idea is to approach the prediction of teeth alignment target as
a problem of predicting the target pose of each tooth given the initial pose of
each tooth. To accurately estimate the initial pose of teeth, we propose a teeth
pose estimation module to regress the local coordinates of teeth. For the geo-
metric information of teeth, we model it as a latent code that can be effectively
extracted from the input teeth point cloud. Finally, 3 GCNs with different ad-
jacency matrices are proposed to aggregating the teeth features in multi-scale.

TAPoseNet operates as follows. The input of our network is a segmented and
classified teeth crown point cloud P =

{
Pv ⊆ RNt×3 | v ∈ V

}
down-sampled

from the pre-orthodontic teeth model T = {Tv | v ∈ V}, where V denotes the set
of tooth labels which are assigned according to FDI two digit notation for per-
manent teeth and Nt is the number of sampled points of each tooth. The teeth
features extraction module mainly extracts the geometric information geocode
and the pre-orthodontic pose Posepre of each tooth. The post-orthodontic teeth
alignment target prediction module predicts the post-orthodontic pose of each
tooth Posepost by aggregating the extracted tooth features in multi-scale. Ap-
plying the transformation matrices from initial poses to predicted poses to the
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pre-orthodontic teeth model, we can obtain the post-orthodontic teeth model
T ′ = {T ′

v | v ∈ V}.

2.1 Teeth features extraction module

The features of a tooth consists of two parts: the pose of the tooth and the
geometric information of the tooth. The pose of a tooth is a representation of
its position and posture in the local coordinate system L relative to the world
coordinate system W , described by rotation and translation in three-dimensional
space. Assuming that there is a point p on a specific tooth, the coordinate of p
in L is pL, the coordinate of p in W is pW , the rotation matrix R ∈ SO(3) is
for the rotation and the vector C is for the translation, the transformation from
pW to pL can be expressed as:

pL = R · (pW − C) (1)

Consequently, the pose of the tooth is represented by the quaternion rotation
R−1 which is a four-dimensional vector and the centroid of the tooth C which
is a three-dimensional vector.

To obtain the local coordinate system of a specific tooth, we propose a 3
head architectures of DGCNN [15] for predicting the x, y, z coordinate of the
tooth in the local coordinate system. (Fig.1) For the stability of training, we
discretize the local coordinates to transform the coordinate regression problem
into a point cloud classification problem. Specifically, the input of this module
is a point cloud of a segmented tooth Pv ⊆ RNt×3, the output of a head is of
size Nt ×Numclass, where Numclass is the number of categories in the x (y, z)
direction.

In the process of determining the target position of orthodontic treatment,
the abstract pose of teeth cannot be solely considered. The shape of different
teeth, surface texture, bite groove and other information have a significant im-
pact on the teeth alignment target determination. In order to effectively extract
the geometric shape information of teeth surfaces, we trained a deep Autoen-
coder (AE) to encode the geometric shape features of teeth [1]. Specifically, for
the input tooth point cloud Pv, the encoder based on PointNet [12] outputs a
latent feature geocode ⊆ RNlatent . The decoder based on MLP then outputs the
reconstructed point cloud P ′

v given the latent feature as input. Using Chamfer
distance (2) as the loss function for training,

Loss (Pv, P
′
v) =

∑
x∈Pv

min
y∈P ′

v

∥x− y∥22 +
∑
y∈P ′

v

min
x∈Pv

∥x− y∥22 (2)

the encoder can effectively extract the geometric shape information of the tooth.
At the inference stage, we only retain the encoder part for extracting the geo-
metric information of the tooth point cloud.
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2.2 Post-orthodontic teeth alignment target prediction module

We predict the post-orthodontic pose Posepost of each tooth using a deep model
based on the pre-orthodontic pose Posepre and geometric information geocode
extracted from the teeth features extraction module. Specifically, we concatenate
the initial pose vector containing a 4 dimensional quaternion and a 3 dimensional
centroid coordinate with geometric feature vector which is a 100 dimensional
latent vector as input X = (Posepre, geocode) for each tooth. Therefore the
input embedding is in shape of N × (7+100), N being the total number of teeth
of a patient (usually 28). This embedding is then fed into Teeth alignment target
prediction module composed of GCN-based encoder and MLP-based decoder.
The encoder employs 3 GCNs with different adjacency matrices constructed from
different spatial dependencies between teeth in the dental arch Gglobal, Glocal and
Gintersection. Specifically, by examining each tooth as a node within the dental
arch, three types of adjacency matrices are formulated: 1) Global adjacency
matrix. This matrix treats the dental arch as a fully interconnected graph so
that every tooth connects with all others. This allows the network to extract
and interpret the holistic arch shape information. 2) Local adjacency matrix. In
this matrix, each tooth is linked not only with the opposing tooth but also with
the adjacent ones, as well as their opposite adjacent teeth. This linkage allows
the network to discern the localized crowded occlusion within the dental arch.
3) Intersection adjacency matrix, every tooth is connected to both the opposing
tooth and the adjacent ones. This structure primarily serves to prevent potential
collisions between teeth. The outputs of the GCNs are concatenated and then
fed into the MLP-based decoder D. The output of the decoder is in shape of
N × 7, which indicates the predicted post-orthodontic pose of each tooth of a
patient.

Posepost = D(Gglobal(X)⊕Glocal(X)⊕Gintersection(X)) (3)

To train the network, we adopt a loss function to compute the difference between
Posepost and the ground truth pose Posegt.

Loss = Lossrotation + Losstranslation (4)

Specifically, Lossrotation measures the cosine similarity between prediction quater-
nion posture and ground truth quaternion posture, Losstranslation calculates the
distance between prediction position of tooth and ground truth position of tooth.
Given the poses before and after orthodontic treatment, we can calculate the
transformation matrices (Transposepre→posepost)v for each tooth. Therefore the
post-orthodontic teeth model can be obtained by applying the transformation
matrices to each tooth of the patient.

T ′ =
{
(Transposepre→posepost)v × Tv|v ∈ V, Tv ⊆ T

}
(5)
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3 Experiments and Results

3.1 Dataset

Our experiment was conducted on a dataset of clinical orthodontic cases sourced
from a dental hospital. This dataset comprises post-orthodontic oral scan data
from 50 patients, along with pre- and post-orthodontic treatment oral scan data
from 25 pairs. Given the potential discrepancies in the orientations of oral scan
data due to the varying features of oral scanning devices, we employed the ICP
registration method [6] to standardize the orientation across all dataset. Then we
use the harmonic field method [18, 3] to segment each tooth from the oral scan
and remove the gingival part, leaving only the crown part. Finally, we label each
tooth crown using the FDI digit. For network training, we use post orthodontic
oral scan data from 50 patients. During training, we utilized data augmentation
methods (e.g., randomly rotate or translate) in each epoch to reverse-generate
diverse initial poses (pre-orthodontic) as input for each case in the training
set with ideal target poses (post-orthodontic), reflecting different orthodontic
symptoms. For validation and testing we utilize 25 pairs of oral scan data that
were gathered before and after orthodontic treatment (10 for validation and 15
for testing). In the inference stage, initial pose of each tooth from the input
is estimated by the pre-trained Teeth Pose Estimation module, so that we can
predict the target pose.

3.2 Implementation and evaluation methods

The implementation detail of TAPoseNet is described below. We randomly down
sample 1024 points from each tooth crown of a patient. During the teeth pose
estimation, The output dimension of each DGCNN network is 32. In teeth align-
ment target prediction module, the MLP-based decoder includes several shared
FC layers, a squeeze-and-excitation(SE) block [8] with reduction ratio 4, and
skip connection.

We trained the model for 4000 epochs with a batch size of 2 using Adam
opimizer. The learning rate was initialized as 1e-4 and use the cosine learning
rate scheduler with the minimun learning rate set to be 1e-6. The models were
trained on an NVIDIA RTX-2080 Ti.

The prediction accuracy of TAPoseNet was evaluated quantitatively and
qualitatively by comparing it to representative methods PSTN [10], TAligNet
[11] and TANet [16]. Given that in clinical practice, the pre- and post-orthodontic
oral scan teeth models typically do not share the same coordinate system and of-
ten display inconsistencies in the model’s vertex counts, we adopted the Chamfer
Distance(CD) as one of our evaluation metrics. This metric evaluates the dis-
tance between the predicted post-orthodontic teeth model and the ground truth
post-orthodontic teeth model post-rigid registration implemented through the
Iterative Closest Point (ICP) algorithm [6]. Additionally, the measurement of
matrix similarity can act as an accuracy index since the 3D transformation of
teeth are described by spatial transformation matrix. Therefore, we randomly
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disarrange the post-orthodontic teeth and calculate the commonly used cosine
similarity accuracy (CSA) to measure the difference between the generated trans-
formation matrix and its ground truth.

3.3 Results

The results of quantitative evaluation of TAPoseNet mainly focus on prediction
accuracy of teeth alignment target. We compared our methd with representation
methods, TANet [16], PSTN [10] and TAligNet [11] for comparison. Significantly,
TANet [16] and PSTN [10] are fully automatic method without any prior infor-
mation, while TAligNet [11] and the Post-orthodontic teeth alignment target
prediction module of our TAPoseNet need the input of the initial pose infor-
mation of the teeth. To ensure the fairness, we use the teeth pose estimation
module of our TAPoseNet to estimate the pose of teeth automatically. The re-
sults are shown in Table 1. As shown in the table, our network achieves the
lowest Chamfer Distance and the highest Cosine Similarity Accuracy.

Table 1. Result comparison of different methods.

Methods Chamfer Distance (mm) ↓ CSA% ↑

non-pose PSTN 0.68667 84.52
TANet 0.68533 84.54

pose-based TAligNet 0.62281 85.94
TAPoseNet 0.60457 86.77

Fig. 2. Visualization result of comparison experiments with other methods. (a) is the
front view of the whole dental model of the first patient, (b) is mandible of the first
patient (c) is maxilla of the first patient. (d) is the front view of the second patient.
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Fig. 2 presents the results of different methods tested on pre-orthodontic
teeth models. Taking the patient with severe misaligned teeth as an example(the
first three rows). From the front view(a), we can see that TANet and PSTN which
directly regress the motion of each tooth cannot tackle the severe misalignment.
The positions and postures of some teeth are obviously still misaligned. TAl-
igNet based on pose prediction without multi-scale feature aggregation performs
better in this case, but the relationship between maxilla and mandible is un-
reasonable. From the mandible(b) and maxilla(c), we can see that TAPoseNet
provides the most optimal results, particularly when managing the relationships
between teeth. Taking the patient with mild underbite problem as an exam-
ple(the last row), we focus on : 1) The distance on the vertical direction where
the upper row of teeth covers the lower row of teeth; 2) Whether the midline of
the teeth is aligned or not. We can see that TAPoseNet performs best in these
two aspects.

From the quantitative evaluation and qualitative evaluation, we can learn
that the methods using pose information perform better than methods that
directly regress the motion of teeth. Therefore, the accuracy of pose estimation
is essential. We also conduct quantitative evaluation (Table 2) using the mean
point-wise distance and maximum point-wise distance as metric on our teeth
pose estimation module. We use the Oriented Bounding Box (OBB) and the
Axis Aligned Bounding Box (AABB) as visualization for qualitative evaluation
(Fig. 3(a)). In practice, the error of the estimated pose is acceptable(Fig. 3(b));

Fig. 3. The visualization of teeth pose estimation. (a) is the axis aligned bounding
box and oriented bounding box based on estimated pose of the dental model. (b) is a
comparison between the predicted teeth pose (green) and the ground truth teeth pose
(red) whose mean point-wise distance is 1.52326

Table 2. The mean point-wise distance and maximum point-wise distance between
the predicted teeth pose and ground truth teeth pose.

teeth categories Mean point-wise distance (mm) Maximum point-wise distance (mm)
Incisor 0.39352 0.52463
Canine 1.00160 1.52326
Premolar 1.14999 1.43654
Molar 0.52546 0.82379
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4 Discussions and Conclusions

We proposed a deep learning-based framework, TAPoseNet to predict teeth
alignment target. The quantitative evaluation and qualitative evaluation demon-
strate the effectiveness of TAPoseNet in orthodontic treatment planning. An
integral component of TAPoseNet is the teeth pose estimation module, which
automatically estimates teeth poses, significantly contributing to various facets
of orthodontic treatment planning. For future work, we need to consider the oc-
clusion of the upper and lower jaw. Additionally, missing teeth or wisdom teeth
cannot be handled in our work, which will be handled in future work.
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