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Abstract. Nuclei semantic segmentation is a key component for advanc-
ing machine learning and deep learning applications in digital pathology.
However, most existing segmentation models are trained and tested on
high-quality data acquired with expensive equipment, such as whole slide
scanners, which are not accessible to most pathologists in developing
countries. These pathologists rely on low-resource data acquired with
low-precision microscopes, smartphones, or digital cameras, which have
different characteristics and challenges than high-resource data. There-
fore, there is a gap between the state-of-the-art segmentation models
and the real-world needs of low-resource settings. This work aims to
bridge this gap by presenting the first fully annotated African multi-
organ dataset for histopathology nuclei semantic segmentation acquired
with a low-precision microscope. We also evaluate state-of-the-art seg-
mentation models, including spectral feature extraction encoder and vi-
sion transformer-based models, and stain normalization techniques for
color normalization of Hematoxylin and Eosin-stained histopathology
slides. Our results provide important insights for future research on nuclei
histopathology segmentation with low-resource data. Code and dataset:
https://github.com/zerouaoui/AMONUSEG 6
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1 Introduction

Haematoxylin and Eosin (H&E)-stained histopathology images are considered
the gold standard in pathology for cancer diagnosis [2]. The staining process
of the histopathology images enables an accurate understanding of biological
structure, leading to better identification of pathological changes and, therefore,
6 *H.Zerouaoui, O. Gbenga and R. Lefdali : Equal Contribution

https://github.com/zerouaoui/AMONUSEG


2 H. Zerouaoui et al.

better cancer diagnosis. In addition to that, segmentation of the nuclei of the
histopathology images using deep learning (DL) models helps the pathologists
confirm or refute their diagnosis and, therefore, propose a better treatment plan
for their patients [2]. However, the lack of publicly available African datasets
makes training models that can generalize across varied patient populations ex-
tremely difficult [12]. Furthermore, the analysis of state-of-the-art (SOTA) seg-
mentation models using spectral feature extraction encoders and vision trans-
formers (ViT) for nuclei histopathology segmentation can provide key insights
for proposing new segmentation approaches to the digital pathology research
field [10,26]. In this work, we introduce, to the best of our knowledge, the first
fully annotated African multi-organ dataset acquired using low-resource equip-
ment for nuclei semantic segmentation of three organs (breast, cervix, and skin)
and one body region (inguinal lymph nodes). Further, we investigate the effect
of stain-normalization techniques in three different normalization categories: (1)
color deconvolution methods, (2) color transfer approaches, and (3) generative
adversarial neural network (GAN)-based techniques. We assess six SOTA seg-
mentation models, and we propose a modified model, FD-NET, by merging a
spatial encoder branch and a spectral encoder branch using Fast Fourier Trans-
formation blocks [6]. The spatial encoder branch processes an input image, while
the spectral encoder branch processes the input image along with a generated
mean attention map using Dino V1 [5,10,26]. In summary, the main contributions
of this paper are: (1) We introduce the first fully annotated, publicly available
African Multi-Organ dataset (AMONuSeg) for nuclei semantic segmentation;
(2) we analyze the impact of stain color normalization techniques on the seg-
mentation performance; (3) we assess the impact of SOTA segmentation models
on nuclei histopathology segmentation; and (4) we propose a modified merged
FD-NET segmentation model.

2 Related Work

Nuclei segmentation plays a key role in the analysis of H&E-stained histopathol-
ogy images, yet it remains a challenging task in computer-aided analysis. DL-
based methods have been actively explored for medical image segmentation. For
instance, U-Net [22], an autoencoder-decoder-based model with a skip connec-
tion, achieved the best performance in the International Symposium on Biomed-
ical Imaging (ISBI) cell tracking challenge and, thus, has become the baseline
architecture for the segmentation task, especially in medical applications includ-
ing nuclei segmentation [20] [18]. Most deep learning architectures use regular
convolution blocks for feature extraction, which operate locally. Therefore, Lu
Chi et al . [6] proposed the Fast Fourier Convolution Block (FFC) that focuses
not only on the local receptive fields but also on learning global patterns through
the spectral domain. Incorporating FFC blocks into models such as ResNet 101
or ResNet 50 [13] has shown an improvement in the performance on ImageNet
compared to using those models with regular convolution blocks [10,6]. The use
of FFC block in segmentation tasks has been recently explored. Farshad et al .
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[10] proposed Y-Net, which combines a spatial encoder extracting the local fea-
tures with a spectral encoder that uses FFC blocks to extract frequency domain
features. Results show that Y-Net outperforms existing models in segmenting
the fluid area in OCT images. Furthermore, the application of transformers in
recognition tasks has demonstrated promising results. Dosovitskiy et al . [8] in-
troduced Vision Transformers (ViTs), which perform better than CNN-based
architectures, such as ResNet, for classification tasks. ViT divides the input im-
age into fixed-size patches, linearly embeds them, and processes them through a
multi-head attention mechanism and an MLP head to perform the classification.
Caron et al . [5] propose DINO, a self-supervised learning method using self-
distillation between two networks, both employing the ViT architecture. DINO
reveals that features of self-supervised ViT capture meaningful semantic segmen-
tation information, which is not the case with supervised ViT or CNNs. DAINet,
proposed by Yeganeh et al . [26], leverages the semantic information encoded in
the attention maps of a pre-trained DINO by employing dual encoders: one for
spatial features extraction from the input image and the other for features ex-
traction from the attention maps. DAINet shows a significant improvement in
the segmentation of abdominal images of the Synapse Dataset. H&E-stained
histopathology images present a color variability due to factors such as tissue
type, preparation, microscope settings, or imaging quality. This color variation
makes the use of histopathology images very challenging in DL-based analysis.
Many methods for stain normalization, such as Macenko [19], Reinhard [23], or
StainGAN [25], have been developed to reduce color variability. These methods
rely on adjusting the color distribution of the source images to match that of a
target template image. J. Boschman et al . [2] provided a comprehensive study
on using stain normalization techniques in the classification. The results reveal
that color normalization techniques can improve the deep learning model perfor-
mance when using a dataset from multiple centers. In the case of a single center,
these techniques do not consistently improve performance.

3 Method

This section describes the key contribution of this work by presenting the pro-
cess of acquiring and annotating the first public fully annotated H&E-stained
nuclei semantic segmentation (AMONuSeg) dataset. We also describe the stain
normalization framework followed to pre-process the dataset.

3.1 AMONuSeg: African Multi-Organ Nuclei Semantic
Segmentation Dataset

This paper introduces the first fully annotated H&E-stained African multi-organ
for nuclei semantic segmentation dataset. The dataset contains 48 images with
a size of 1280x960 and 250x Magnification Factor (MF) 7 collected using a dig-
ital microscopic camera (MA 500 AmScope Matlab ®, USA) [17]. The images
7 250x is calculated by the magnification of the eyepiece which is 10x and the objective

lens which is 25x.
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originating from three organs and one region (breast, cervical, skin, and inguinal
lymph nodes) were carefully selected and processed by a senior pathologist. Ta-
ble 1 describes the details of the AMONuSeg dataset in comparison to the three
publicly available datasets CryonuSeg [20], Monuseg [18] and TNBC [21] that
were acquired from The Cancer Genome Atlas (TCGA) Portal [7]. Following the
completion of the sample preparation steps, which included tissue processing and
H&E staining, two trained annotators conducted the annotation process. The
details of the sample preparation and annotation process are described in this
Section.

Table 1. Description of the three public datasets for nuclei semantic segmentation:
MoNuSeg, CryoNuSeg, TNBC, and the newly collected African dataset, AMONuSeg

Dataset #Image Body-Part #Nuclei MF Image Size Source
MoNuSeg [18] 30 7 28,846 40x 1000x1000 TCGA

CryoNuSeg [20] 30 10 8,251 40x 512x512 TCGA
TNBC [21] 50 1 4,022 40x 512x512 TCGA

AMONuSeg (Ours) 48 4 19,036 250x 1280x960 Nigeria

Tissue Processing Duplicated samples of surgically resected cancerous tis-
sues were collected and fixed in neutral buffered formalin. The fixed tissues
were removed from the neutral-buffered formalin and dehydrated using ascend-
ing grades of alcohol. The method involved dehydration of the tissues in two
changes of 70% alcohol, two changes of 90% alcohol, three changes of 95% alco-
hol, and three changes of absolute alcohol. Each stage lasted for 30 minutes. The
dehydrated tissues were cleared with two changes of chloroform for two hours.
The cleared tissues were infiltrated by immersing them in molten paraffin wax
and then allowed to solidify. The embedded tissues were encased in a rectangular
block and then used with a rotary microtome at 5 µm per section [24]. The tissue
sections were floated out in a water bath at 30°C, and clean slides were used to
pick up the tissues from the warm water bath. The tissues were then stained
using the H&E-staining method.

Haematoxylin and Eosin (H and E) staining method The method of
H&E staining was carried out by dewaxing the tissue in two changes of xylene
for three minutes each, hydrated by passing them through descending grades
of alcohol (100%, 95%, 90%, and 70%) for three minutes each, then stained in
hematoxylin for ten minutes, and washed in tap water to remove excess stain.
The slides were then flooded with acid alcohol for a few seconds for differentiation
and then washed in tap water again. The slides were then placed in Scott’s tap
water for five minutes and counter-stained with Eosin for three minutes. The
sections were rinsed in tap water, dehydrated in ascending grades of alcohol,
and cleared in xylene. The sections were then covered using a mountant [24].
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Fig. 1. The difference between automatic annotations generated using the Fiji ImageJ
where the nuclei are merged and the manual annotations of samples of a histopathology
breast image .

Annotation Process Two trained annotators, a data scientist (A1) and a
post-doc researcher (A2), conducted the annotation process on nuclei segmen-
tation by an expert pathologist to generate the ground truth masks. The an-
notation protocol was inspired by the CryoNuSeg and MoNuSeg datasets pro-
tocols [20,18], which was further enhanced by adding a first validation using
the masks generated automatically by the FIJI ImageJ software [9]. Below is a
detailed description of the annotation process:

1. Generate unsupervised automatic nuclei semantic segmentation masks using
the Fiji ImageJ software [9], which serve as preliminary annotations for the
tissue slides. These annotations provide a rough estimate of the nuclei loca-
tions, simplifying the initial annotation process for the two annotators A1
& A2.

2. Perform manual nuclei semantic segmentation using the LabelStudio [4] seg-
mentation tool by the two annotators A1 & A2.

3. Conduct a second round of intra-observation by A2 to validate the annota-
tions made by A1.

4. Validate the final manual-generated ground truth masks by three expert
pathologists with 4, 10 and 15 years of experience.

5. Correct the manual nuclei annotations based on the mark-ups and observa-
tions of the three expert pathologists.

6. Conduct a final validation by three expert pathologists to ensure that the
annotations meet the highest standards to help the pathologist make the
diagnosis. 8

A visualization of automatic segmentation using Fiji ImageJ compared to
manual segmentation is presented in Figure 1.

3.2 Stain Normalization

One of the biggest challenges in the application of segmentation models for
the digital pathology of H&E-stained samples is the color variations of (1) the
staining process using the H&E stains [3] and (2) the different scanners used

8 Due to disagreements among pathologists [20], in this paper, we present annotations
validated by three expert pathologists where they reached agreements.
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Fig. 2. AMONuSeg input images of the three organs (breast, skin, and cervix) and
inguinal region, along with their corresponding processed stain normalized images using
Macenko, Reinhard, and StainGAN approaches.

to digitize the whole slide images tissues [16]. A number of stain normalization
techniques have been proposed to reduce the variability of colors in the H&E-
stained histology images. These approaches can be divided into three categories,
including (1) color deconvolution methods that involve segregating the colors
into their staining components before applying the transformation [19], (2) color
transfer approaches that adjust the color of an input image to match that of a
target image [23], and (3) generative adversarial neural network (GANs) based
techniques that leverage adversarial training to learn mappings between differ-
ent stain spaces, allowing for the adaptation of images to a standardized stain
appearance [25]. In this study, we used Macenko [19], Reinhard [23], and Stain-
GAN techniques [25], each of which corresponds to one of the aforementioned
approaches, respectively, to evaluate their impact as a pre-processing technique
for histopathology nuclei image segmentation. Figure 2 illustrates samples from
different body organs and regions, with different stain normalization approaches.

4 Experiments

In this section, we summarize the results of the experimental evaluation con-
ducted on the proposed AMONuSeg dataset. We present the experimental setup,
discuss the results of the assessed segmentation models, and conduct an abla-
tion study of the FD-NET proposed model [10] to analyze the impact of spectral
features encoder branch and ViT [8] on the segmentation task.

4.1 Experimental Setup

The experimental protocol followed to evaluate the SOTA methods is the same as
prior works [20]. The AMONuSeg dataset consists of H&E-stained histopathol-
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ogy images of three organs and one body region with 12 images per organ. A
3-fold cross-validation was performed to evaluate the models, with each fold
comprising 36 images for training and 12 images for validation. All the models
except DAINet [26] were trained with a batch size of 8, a learning rate of 1e-4, the
Adam optimizer [26], and a maximum of 400 epochs. As for the DAINet model,
DINO V1 [5] was retrained using the PanNuke dataset [11], which contains 7000
H&E-stained histopathology images, and ViT-S/16 model with a batch size of 64
and a learning rate of 1e-4. For the augmentation of the AMONuSeg dataset, we
applied random transformations, including horizontal flip, vertical flip, and ro-
tations. As for the training, we dispatched the images to patches of size 512x512
and therefore increased the image samples from 48 images of size 1280x960 to
348 patches of size 512x512. The patches are then resized to 256x256. We report
the average Dice score [10,26,14] of all the evaluated models. All experiments
were run using an NVIDIA A100-SXM4-80GB GPU.

4.2 Results

Table 2 describes the results of the average Dice score of the selected segmen-
tation models when applied to the original images of the AMONuSeg dataset
and its pre-processed variants using the three stain normalization techniques
Macenko [19], Reinhard [23], and StainGAN [25]. It is observed that the stain
normalization techniques used have a minor impact on the performance prior to
the original dataset with a tendency of achieving minor improvement in terms
of the average Dice score when using the StainGAN approach [25]. The lack
of a consistent best stain normalization technique suggests that these meth-
ods do not impact the segmentation performance. Furthermore, we noticed that
most of the SOTA models did not outperform the baseline U-Net for nuclei
histopathology segmentation. Although transformer-based and spectral feature
extraction encoder-based models show significant improvement in other medical
modalities such as optical coherence tomography [10] and computed tomography
images [26], the challenge of accurately segmenting small objects, such as the
nuclei, remains a significant bottleneck limiting performance improvements over
U-Net in the H&E-stained histopathology image segmentation task [15].

Ablation Study The last row of Table 2 presents an ablation study of the
Y-Net model [10] components. We opted to modify the Y-Net model due to
its comparable performance with the baseline U-Net for nuclei segmentation by
merging it with the DAINet model [26]. Y-Net consists of two encoder branches
using the same spatial encoder used in U-Net with regular convolution blocks
in the first branch and a spectral encoder in the second branch using the FFC
blocks [6]. Alternatively, the DAINet model consists of two convolution encoder
branches, one using the original images as input and a second using the attention
maps generated using DINO V1 [5]. In order to study the impact of both spectral
encoders and ViT-based segmentation, we changed the input images of Y-Net
components by feeding the FFC branch with both the original input images and



8 H. Zerouaoui et al.

Fig. 3. FD-Net: The proposed network [10] has two branches: (1) Spatial encoder
branch that processes spatial features and consists of convolutional blocks (Convolu-
tional layer, batch normalization layer, a ReLU activation function, and a max pooling
layer) and (2) Spectral branch that processes spectral features and consists of fast
Fourier convolutional blocks [6]. An input image, which can be either the original im-
age or a stain-normalized preprocessed image using Macenko, Reinhard, or StainGAN
methods, is fed to the spatial encoder branch, while the input image and the generated
mean attention map using Dino v1 are fed to the spectral branch.

the mean attention maps generated using DINO V1 and the original input in
the spatial encoder branch as illustrated in Figure 3. As a result, the modified
Y-Net named FD-NET did not show a significant improvement in terms of the
average Dice score but achieved competitive performance compared to SOTA
models [15]. We believe that, despite the staining specificity of the H&E-stained
histopathology images, the particularity of the small size of the nuclei may not
align effectively, leading to non-significant improvement of the performance even
while using ViT-based models and spectral feature extraction encoder branches.

4.3 Discussion and Conclusion

In this study, we introduced the first fully annotated AMONuSeg public dataset
for nuclei semantic segmentation that offers 48 H&E-stained histopathology im-
ages using the 250X MF and the size of 1280x960 of three organs (breast, cervix,
and skin) and one region (inguinal lymph nodes) acquired using limited re-
sources. We also analyze the impact of both stain normalization techniques and
SOTA segmentation models, particularly the ones integrating spectral encoder
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Table 2. The average Dice score of the evaluated segmentation models on the Original
and pre-processed AMONuSeg dataset using the Stain-Normalization techniques .

Preprocessing
Model Original Dataset Macenko [19] Reinhard [23] StainGAN [25]

U-Net [22] 0.823 0.794 0.825 0.826
SegNet [1] 0.809 0.755 0.799 0.809
Y-Net [10] 0.830 0.794 0.825 0.826

DAINet [26] 0.824 0.793 0.822 0.828
TransNuseg [14] 0.815 0.791 0.814 0.813

FD-Net 0.828 0.796 0.822 0.830

branches and ViT-based segmentation models. We hypothesize that the stain
of the histopathology images represents spectral features that can be extracted
more effectively using an FFC [6] based model and that the segmentation per-
formance can be improved using ViT [8] models such as DINO V1. Therefore,
we compared our proposed model FD-Net to the SOTA baselines: Y-Net [10],
DAINet [26], TransNuseg [14], U-Net [22], and SegNet [1]. In this evaluation,
we used the original AMONuSeg dataset, and its variants stain normalized with
Macenko [19], Reinhard [23] and StainGAN [25]. Results showed that nuclei seg-
mentation remains a challenging problem: despite the novelty of the proposed
approach and the use of stain normalization techniques, minor improvements in
terms of performance were reported compared to the baseline U-Net. The best
performance achieved a higher average Dice score of 0.83 using both Y-Net with
the original AMONuSeg and FD-Net with the StainGAN pre-processed dataset.
In conclusion, our findings suggest that despite employing stain normalization
techniques, spectral feature extraction encoder, and ViT-based models, the seg-
mentation of nuclei was not be improved due to the different levels of granularity
[15] and the small size of nuclei in H&E-stained histopathology images.
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