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Abstract. Continual Learning (CL) is crucial for enabling networks
to dynamically adapt as they learn new tasks sequentially, accommo-
dating new data and classes without catastrophic forgetting. Diverging
from conventional perspectives on CL, our paper introduces a new per-
spective wherein forgetting could actually benefit the sequential learning
paradigm. Specifically, we present BiasPruner, a CL framework that in-
tentionally forgets spurious correlations in the training data that could
lead to shortcut learning. Utilizing a new bias score that measures the
contribution of each unit in the network to learning spurious features,
BiasPruner prunes those units with the highest bias scores to form a
debiased subnetwork preserved for a given task. As BiasPruner learns a
new task, it constructs a new debiased subnetwork, potentially incorpo-
rating units from previous subnetworks, which improves adaptation and
performance on the new task. During inference, BiasPruner employs a
simple task-agnostic approach to select the best debiased subnetwork
for predictions. We conduct experiments on three medical datasets for
skin lesion classification and chest X-Ray classification and demonstrate
that BiasPruner consistently outperforms SOTA CL methods in terms
of classification performance and fairness. Our code is available here.
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1 Introduction

Humans inherently learn in a continual manner, acquiring new concepts over
time without forgetting previous ones. In contrast, deep learning models en-
counter the challenge of catastrophic forgetting [17], wherein learning new data
can override previously acquired knowledge. This issue becomes especially pro-
nounced within the medical domain, given the ever-evolving nature of medical
data, the variations in acquisition protocols, the utilization of diverse devices
for obtaining medical images, and other factors that contribute to shifts in data
distributions or the introduction of new disease classes over time. As a result,
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continual learning (CL) [25,27] has emerged as a promising solution, allowing a
network to learn continually over a sequence of presented data while forgetting as
little as possible about previous knowledge. Several CL methods have emerged
within the medical field to address the challenge of forgetting. Replay-based
methods [22,13] store a subset of data samples and replay them to retain old
information, regularization-based methods [15] impose restrictions on the net-
work parameter updates to preserve prior knowledge while learning new tasks,
and architecture-based methods, assign specialized architectural components for
each task within the network [1,2] or expand them to accommodate new tasks [9].

While previous CL methods achieved success, they have yet to consider a
more realistic setting in which dataset bias exists. In medical imaging, bias
could manifest through an imbalanced distribution of sensitive attributes (e.g.,
gender, age, ethnicity) [4]. Even slight imbalances induce spurious correlations
between attributes and the classification target (diagnosis) [3], creating an illu-
sion of predictive power that models can exploit. Leveraging such information
compromises the network’s generalization ability, amplifying societal biases over
misrepresented populations in data (e.g., detecting melanoma in individuals with
dark skin tones. In CL, learning spurious correlations poses a significant chal-
lenge due to bias transfer, where biases learned by a model can be transferred to
a downstream task even if it has unbiased data [23]. Since CL involves learning
a sequence of tasks, the bias transfer can potentially be amplified. Moreover,
recent work [5] mathematically proved that handling bias becomes substantially
harder when tasks are presented sequentially compared to joint training.

To address this gap and tackle bias in CL, we propose BiasPruner, a fixed-
size network capable of learning sequentially and fairly over time by dedicat-
ing a unique debiased subnetwork for each task. BiasPruner leverages a newly
proposed bias score to measure the contribution of each unit in the network to
learning spurious features. Units with high bias scores are pruned to form a task-
specific debiased subnetwork, which is kept frozen to avoid forgetting, whereas
the remaining pruned units are subsequently offered for learning new tasks. Fig. 1
presents an overview of our method. We evaluate our solution on three medical
imaging classification datasets, each with different bias attributes. Our results
demonstrate BiasPruner’s superior performance in both classification accuracy
and fairness. While a few recent methods have addressed fairness in CL [14,16,6],
BiasPruner, to the best of our knowledge, is the first work in the medical field
covering different benchmarks and bias attributes in a class-incremental setup.
Crucially, BiasPruner does not require dataset biases to be explicitly annotated.
This is particularly relevant in healthcare, where identifying biases is complex
and costly, compounded by patient data privacy concerns [19].

2 Methodology

BiasPruner employs a fixed-size network, f , capable of learning T tasks se-
quentially, one at a time, where T is not pre-determined, without forgetting
any of the previously learned tasks. During training the t-th domain, where
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Fig. 1: (Left) BiasPruner learns sequentially, allocating a subnetwork for each
task. (Right) BiasPruner evaluates each network unit’s contribution to learning
spurious features from biased training data, assigning bias scores. High-score
units are pruned, and the subnetwork is finetuned on both easy and hard samples.

t ∈ {1, 2, . . . , T}, the network does not have access to old data, i.e., it exclu-
sively receives biased training data Dt = (xi, yi) specific to the current task,
where (xi, yi) represent the training samples, consisting of a total of Nt images
and yi ∈ Ct classes (note the subscript t emphasizing that the set of classes
may change, including adding new classes, for new tasks). For clarity, we em-
ploy the symbol c to denote any class within the set Ct. BiasPruner creates a
debiased subnetwork for the t-th task by pruning units in the network that are
mostly correlated with unknown bias(es) in Dt. Furthermore, BiasPruner trans-
fers knowledge through pruning of the original network, including units of previ-
ously created subnetworks, for each new task. At inference, BiasPruner identifies
the optimal subnetwork for predictions on a given data in a task-agnostic setup;
i.e., information about the task origin of a test image is unknown or unavailable.

2.1. Detecting Spurious Features through Bias Scoring. Given a biased
dataset Dt, one of the key causes of learning shortcut predictions occurs when
the model finds it easier to learn spurious features rather than the intended
ones [19]. Consequently, we propose to intentionally encourage the network f to
quickly fit on the easier features from the training data of Dt. To achieve this, we
adopt the generalized cross entropy (GCE) [29] loss, LGCE, which was originally
proposed to address noisy labels by fitting on the easier clean data and slowly
memorizing the hard noisy samples. The GCE loss is formulated as follows:

LGCE(p(x; θ), y) =
1− py(x; θ)

q

q

where q ∈ (0, 1] is a hyperparameter controlling the degree of bias amplification,
p(x; θ) and py(x; θ) are the softmax output of the network and its probability
assigned to the target label y, respectively. Due to the GCE loss’s gradient, which
up-weights samples with a high probability of predicting the correct target, the
network quickly becomes biased to easier samples and learns shortcuts [21].

Once the network is biased, it becomes logical to identify the units that have
contributed the most to learning the shortcut in each class. To achieve this, we
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partition the training data {x, y} into two groups per groundtruth class c: The
biased sample set, Et

c , consists of (xi, yi) pairs that are correctly classified by
the biased network with a probability py,i ≥ τ ; i.e., samples that are Easier for
the network to learn. Similarly, the unbiased sample set, Ht

c, comprises (xi, yi)
pairs that are misclassified by the biased network; i.e., samples that are Harder
to learn, as follows (Refer to supplementary material, Fig. 4, for visualizations):

Et
c = {i | yi = ci & py,i ≥ τ} , Ht

c = {i | yi ̸= ci & py,i ≥ τ}.

Next, a we define a bias score, St
c,n, for each unit n in the biased network

relative to a given class c by analyzing each unit’s ReLU activation, ani , as follows:

St
c,n =

1

|Et
c |

∑
i∈Et

c

Var (ani )−
1

|Ht
c|

∑
i∈Ht

c

Var (ani ) .

Var (ani ) represents the variance of the feature map ani over its spatial dimensions
(w, h). The final unit-based bias score S̄t

n is calculated by averaging the results
over all class-specific scores. Units that respond more strongly to biased samples
(c.f. Et

c) than to unbiased samples (c.f. Ht
c) are assigned higher bias scores, des-

ignating them as the main contributors to learning shortcuts in the network.

2.2 Forming Subnetworks by Bias-aware Pruning and Finetuning. To
ensure fairness in CL, we form a task-specific, debiased subnetwork, ft, by se-
lectively removing the units responsible for learning the bias in Dt. The pruning
involves removing the top γ% of units, which includes the output feature maps
with the highest bias scores and their corresponding filters, leaving (1 − γ%)
for each ft. To counteract potential performance drop post-pruning while pri-
oritizing improved performance on harder-to-learn samples, we propose a new
weighted cross entropy loss, LWCE, for fine-tuning ft on Dt over a few epochs:

LWCE(x) = W(x) · LCE (f(x), y) , where W(x) = exp (α · LGCE(x)) .

α ∈ (0, 1) is a trainable parameter, and LGCE(x) is the sample’s GCE loss value
determined as discussed in Sec. 2.1. With this weighted function, the influence
of training samples in the finetuning process varies according to their bias align-
ment; i.e., easy samples (c.f., LGCE(x) is small) are down-weighted, whereas hard
samples (c.f., LGCE(x) is large) are up-weighted, exponentially.

2.3. Debiased Knowledge Transfer for Enhanced Task Adaptation.
When learning a new task, BiasPruner facilitates knowledge transfer (KT),
which is achieved by pruning the entire original network f to create the new
task-specific subnetwork, including both free units and pre-assigned debiased
subnetworks of previous tasks. To avoid forgetting the previously acquired knowl-
edge, the subnetworks associated with prior tasks are kept frozen and only the
free units are updated to learn the new task.
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Table 1: Details on the multi-class disease datasets used in our experiments.
Dataset Number of images Classes Tasks Classes per task Dataset bias
FITZ 16,012 114 6 [19, 19, 19, 19, 19, 19] Skin tone (I, II, III, IV, V, VI)
HAM 8,678 7 3 [2, 2, 3] Age (age≥60, age<60)
NIH 19,993 14 3 [4, 5, 5] Gender (male, female)

2.4. Task-agnostic Inference. BiasPruner addresses a practical scenario where
the task identity of a test image is unknown during inference. In other words,
the specific task to which an image belongs to is not explicitly provided. Given a
test batch of size s as Xtest , we employ a ‘maxoutput’ strategy for task predic-
tion [7], which involves identifying the task with the maximum output response:
t∗ = argmax

t=1,2,...,T

∑s
i=1 maxφt (θt (x

test
i )), where φt is the fully connected layer of

the t-th subnetwork. Subsequently, we use the selected t∗ task to make the final
prediction ŷ based on the corresponding subnetwork; ŷ = ft∗ (X

test ).

3 Experiments and Results

Datasets. We selected/constructed datasets based on three primary consider-
ations: (a) the presence of a dataset bias that is spuriously correlated with the
disease classes; (b) The need for a variety of classes to facilitate the CL setup; and
(c) publicly available to ensure reproducibility. Hence, we include Fitzpatrick17K
(FITZ) [10], HAM10000 (HAM) [24] and NIH ChestX-Ray14 (NIH) [26]. Each
dataset has 114, 7 and 14 distinct classes, respectively, that are split into 6, 3 and
3 tasks, respectively, with non-overlapping classes, as shown in Table 1 (Refer
to supplementary material for dataset (Table 5) & bias (Fig. 5) details).
Evaluation Metrics. We assess the performance of BiasPruner using both
the accuracy and fairness metrics. We use the commonly used F1-score (F) and
balanced accuracy (ACC) metrics. We report the accuracy per sensitive attribute
(e.g., male, female) as well as overall class performance (Overall). For fairness,
we use the demographic parity ratio (DPR) and equal opportunity difference
(EOD) metrics. Similar to other CL methods, we report all metrics at the end of
learning (i.e., after training the model on all T tasks), averaged across all tasks.
Implementation Details. We use ResNet-50 [11] as the backbone for feature
extraction and a unified classifier for all tasks during inference. We use the Adam
optimizer with a batch of 32 images for 200 epochs to train BiasPruner with
LGCE, having early stopping in case of overfitting. We set q in LGCE to 0.7
(default) and the confidence threshold to τ = 0.70. We set the pruning ratio
to γ = 0.6 for all tasks. For the finetuning with LWCE, we train the debiased
subnetwork for 20 epochs, and we saved the weights with the highest ACC and
EOD on the validation set. In all experiments, we report averaged results across
three random task orders, aiming to neutralize any potential impact of the order
in which tasks are processed during network training.
I. Quantitative Results on Skin-tone-biased Dataset (FITZ) are reported
in Table 2. First, we compare BiasPruner (Exp D) against three common CL
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Table 2: Classification performance and fairness on FITZ. Best results marked
in bold (except upper-bound). Higher is better for all metrics except EOD.
Exp Method F ACC DPR EODType-I Type-II Type-III Type-IV Type-V Type-VI Overall

Comparison against Baselines

A
JOINT 0.256 0.269 0.304 0.335 0.309 0.365 0.245 0.324 0.137 0.298
SINGLE 0.435 0.410 0.469 0.465 0.495 0.492 0.430 0.472 0.185 0.251
SeqFT 0.188 0.187 0.261 0.299 0.254 0.214 0.192 0.221 0.051 0.721

Comparison against CL Methods

B
EWC 0.325 0.254 0.356 0.355 0.401 0.412 0.244 0.324 0.212 0.342

PackNet 0.433 0.366 0.402 0.445 0.447 0.479 0.319 0.414 0.154 0.425
SupSup 0.451 0.254 0.298 0.441 0.452 0.436 0.410 0.425 0.162 0.431

Comparison against CL with Bias Mitigation Methods

C

EWC+S 0.308 0.264 0.357 0.324 0.411 0.417 0.385 0.341 0.228 0.311
PackNet+S 0.495 0.434 0.485 0.494 0.565 0.562 0.584 0.501 0.184 0.248
SupSup+S 0.466 0.418 0.467 0.432 0.554 0.561 0.534 0.492 0.182 0.221
EWC+W 0.321 0.251 0.356 0.334 0.392 0.401 0.398 0.346 0.216 0.298

PackNet+W 0.527 0.405 0.477 0.480 0.529 0.546 0.524 0.472 0.144 0.246
SupSup+W 0.457 0.425 0.451 0.448 0.530 0.561 0.544 0.508 0.178 0.254

Our Proposed Fair Continual Learning Method
D BiasPruner 0.540 0.457 0.502 0.435 0.551 0.563 0.584 0.512 0.331 0.202

[Upper-bound] Comparison against a Bias Mitigation Method
E FairDisCo 0.542 0.479 0.523 0.468 0.571 0.574 0.615 0.548 0.474 0.192

baselines (Exp A): JOINT, which consolidates data from all tasks for joint model
training; SINGLE, which trains separate models for each task and deploys task-
specific models during inference; and SeqFT, which finetunes a single model
on the current task without addressing forgetting. We observe that SINGLE
outperforms JOINT as each task is learned independently, leading to improved
classification and fairness results, and that SeqFT exhibits a significant perfor-
mance drop due to catastrophic forgetting. Notably, BiasPruner outperforms
baselines in terms of overall accuracy and fairness, attributing this to its ability
to reduce the training data bias and transfer knowledge across the tasks.

Secondly, we compare BiasPruner against three CL methods (Exp B): EWC [12],
a regularization-based method, and PackNet [20] and SupSup [28], both subnetwork-
based like ours. We notice that these CL methods demonstrate lower fairness
compared to BiasPruner, which is expected as they overlook dataset bias. Specif-
ically, PackNet and SupSup exhibit higher accuracy but lower fairness compared
to EWC. This is mainly due to their subnetwork-based nature, which can in-
advertently worsen accuracy disparities, particularly among specific subgroups,
during the removal of unimportant parameters [18].

Thirdly, we enhance the competing CL methods by augmenting each of them
with pre-processing bias mitigation algorithms (Exp C). Specifically, we apply
the Resampling Algorithm (S), which balances the dataset by oversampling mi-
norities and undersampling majorities within each pair of skin label and tone.
Additionally, we explore the Reweighting Algorithm (W) [8], which assigns lower
weights to images that have been disadvantaged or favored to prevent the model
from learning discriminatory features. While showing improved accuracy and
fairness compared to Exp B, they fall short of our BiasPruner’s performance.
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Table 3: Classification performance and fairness on HAM and NIH. Best results
marked in bold (except upper-bound).

E
xp Method

HAM NIH

F ACC DPR EOD F ACC DPR EOD
<60 ≥60 Overall M F Overall

Comparison against Baselines

F
JOINT 0.755 0.781 0.665 0.738 0.239 0.320 0.282 0.306 0.259 0.285 0.706 0.325
SINGLE 0.836 0.819 0.834 0.841 0.609 0.131 0.434 0.428 0.403 0.417 0.728 0.311
SeqFT 0.431 0.372 0.404 0.416 0.201 0.558 0.219 0.251 0.217 0.231 0.246 0.544

Comparison against CL Methods

G
EWC 0.788 0.773 0.804 0.772 0.561 0.360 0.398 0.428 0.405 0.417 0.562 0.264

PackNet 0.824 0.807 0.799 0.808 0.620 0.302 0.434 0.47 0.444 0.458 0.588 0.284
SupSup 0.831 0.788 0.845 0.822 0.625 0.296 0.448 0.451 0.441 0.445 0.571 0.293

Comparison against CL with Bias Mitigation Methods

H

EWC+S 0.834 0.821 0.832 0.827 0.575 0.172 0.412 0.434 0.416 0.421 0.567 0.259
PackNet+S 0.839 0.849 0.817 0.829 0.613 0.181 0.419 0.44 0.425 0.434 0.640 0.211
SupSup+S 0.849 0.802 0.811 0.817 0.639 0.204 0.432 0.456 0.448 0.451 0.662 0.204
EWC+W 0.791 0.778 0.784 0.781 0.544 0.168 0.418 0.441 0.423 0.432 0.569 0.251

PackNet+W 0.814 0.877 0.819 0.842 0.549 0.189 0.443 0.462 0.456 0.459 0.704 0.192
SupSup+W 0.846 0.797 0.809 0.803 0.536 0.213 0.458 0.481 0.463 0.474 0.731 0.184

Our Proposed Fair Continual Learning Method
I BiasPruner 0.860 0.851 0.852 0.858 0.642 0.127 0.488 0.525 0.484 0.507 0.821 0.188

[Upper-bound] Comparison against a Bias Mitigation Method
J FairDisCo 0.873 0.876 0.904 0.893 0.682 0.113 0.486 0.545 0.512 0.538 0.855 0.150

Finally, we compare BiasPruner to FairDisCo [8], a (non-CL) bias mitiga-
tion technique for medical applications, which uses bias annotations in training.
Therefore, it can set an upper bound on the performance. For a fair comparison,
we allow FairDisCo to learn each task independently and report the average per-
formance over all tasks (Exp E). Despite not using bias annotations, BiasPruner
exhibits slightly lower but comparable performance to FairDisCo.
II. Quantitative Results on Age- and Gender-biased Dataset (HAM
& NIH, respectively) are given in Table 3. BiasPruner (Exp I) outperforms
other baselines (Exp F), CL methods (Exp G), and CL methods with debiasing
(Exp H) in both overall task classification and fairness.
III. Ablation Studies analyze the impact of individual components in BiasPruner
(Table 4). In Exp K, we train the model using CE loss instead of GCE. In
Exp L, we randomly prune the network instead of using our bias-based pruning.
In Exp M, we finetune the debiased subnetworks in BiasPruner with CE loss
without weighting it. In Exp N , we simulate the absence of knowledge transfer
(KT) by prohibiting any overlapping between the parameters θt and θt′ for any
two tasks t and t′. We observe that 1) the impact of LWCE (Exp M) is predom-
inant, as fine-tuning with CE leads to the poorest performance in accuracy and
fairness, attributed to the risk of subnetworks potentially relearning bias.
IV. A Sequential Analysis, as illustrated in Fig. 2, showcases the consistently
superior performance of BiasPruner over other methods in terms of overall
accuracy and DPR after each step in the continual learning sequence across
FITZ, HAM, and NIH datasets.
V. For Analysis of Model Biases (e.g., skin tone), we trained classifiers for
sensitive attribute detection on top of frozen feature extractors from three net-
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Table 4: Classification (Overall) & fairness (DPR) results of BiasPruner from
ablation studies. Best results marked in bold.
Exp LGCE Bias-aware Pruning LWCE KT FITZ HAM NIH

Overall↑ DPR↑ Overall↑ DPR↑ Overall↑ DPR↑
D, I ✓ ✓ ✓ ✓ 0.512 0.331 0.858 0.642 0.507 0.821
K × ✓ ✓ ✓ 0.498 0.254 0.834 0.579 0.501 0.779
L ✓ × ✓ ✓ 0.508 0.328 0.842 0.637 0.498 0.814
M ✓ ✓ × ✓ 0.481 0.247 0.792 0.576 0.468 0.754
N ✓ ✓ ✓ × 0.504 0.324 0.851 0.630 0.496 0.803

Fig. 2: The overall (dashed) and DPR (dotted) performance of BiasPruner and
other methods over all the seen tasks after each training step in the continual
learning sequence, where Ti refers to the ith task.

works: CE-based, GCE-based, and our BiasPruner, all pre-trained to diagnose
(Fig. 3). The better-than-chance (∈ [0.63, 0.828]) detection accuracy of sensitive
attributes, in CE- and GCE-based training, reveals that sensitive data is embed-
ded in the originally learned features, i.e., the presence of bias. GCE, due to its
loss function promoting shortcut learning, showed the most bias. The high accu-
racy achieved by CE shows that even naïvely trained models are susceptible to
bias. In contrast, BiasPruner shows minimal bias, reflected by its near-random
AUC values (∈ [0.49, 0.67]) when detecting sensitive information.

Fig. 3: Sensitive attribute detection from frozen models pre-trained to diagnose.
BiasPruner low AUCs indicate that bias is not encoded in its resulting features.

4 Conclusion

In this paper, we presented BiasPruner, a new continual learning (CL) frame-
work that leverages intentional forgetting to improve fairness and mitigate catas-
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trophic forgetting. By quantifying the influence of each network unit on learning
spurious features, BiasPruner identifies and prunes highly biased units to con-
struct a debiased subnetwork for each task. Experimental evaluations on three
classification datasets demonstrate that BiasPruner consistently outperforms
baselines and CL methods in classification performance and fairness. Our results
highlight the need to address dataset bias in future CL designs and evaluations,
due to the frequent fairness shortcomings of current CL methods.
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