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Abstract. The segmentation of the pubic symphysis and fetal head
(PSFH) constitutes a pivotal step in monitoring labor progression and
identifying potential delivery complications. Despite the advances in deep
learning, the lack of annotated medical images hinders the training of
segmentation. Traditional semi-supervised learning approaches primarily
utilize a unified network model based on Convolutional Neural Networks
(CNNs) and apply consistency regularization to mitigate the reliance on
extensive annotated data. However, these methods often fall short in
capturing the discriminative features of unlabeled data and in delineat-
ing the long-range dependencies inherent in the ambiguous boundaries
of PSFH within ultrasound images. To address these limitations, we in-
troduce a novel framework, the Dual-Student and Teacher Combining
CNN and Transformer (DSTCT), which synergistically integrates the
capabilities of CNNs and Transformers. Our framework comprises a Vi-
sion Transformer (ViT) as the ’teacher’ and two ’student’ models — one
ViT and one CNN. This dual-student setup enables mutual supervision
through the generation of both hard and soft pseudo-labels, with the
consistency in their predictions being refined by minimizing the classifier
determinacy discrepancy. The teacher model further reinforces learning
within this architecture through the imposition of consistency regulariza-
tion constraints. To augment the generalization abilities of our approach,
we employ a blend of data and model perturbation techniques. Compre-
hensive evaluations on the benchmark dataset of the PSFH Segmentation
Grand Challenge at MICCAI 2023 demonstrate our DSTCT framework
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outperformed 10 contemporary semi-supervised segmentation methods.
Code available at https://github.com/jjm1589/DSTCT.

Keywords: Intrapartum Ultrasound · Semi-supervised learning · Image
segmentation · Transformer.

1 Introduction

The segmentation of the pubic symphysis and fetal head (PSFH) from intra-
partum ultrasound (US) images is a critical step in developing an automated
diagnostic system. This process is essential for generating quantitative descrip-
tors, such as shape and size of PSFH. These descriptors are crucial in assessing
labor progression and identifying potential delivery complications [7, 1, 12, 2, 15,
4, 6, 23]. Recent advancements in deep learning, particularly in Convolutional
Neural Networks (CNNs) and Transformers, have significantly improved medical
image segmentation. However, these models face challenges in clinical applica-
tions due to the scarcity of large-scale annotated training datasets. Deep learning
approaches generally require extensive, labeled datasets to ensure model gener-
alization. The collection of densely annotated US images is a complex task. It de-
mands considerable time, medical expertise, and clinical experience for accurate
pixel-wise labeling [3, 24]. In clinical practice, there is often a larger amount of un-
labeled data than labeled data, emphasizing the importance of semi-supervised
learning techniques. These techniques aim to improve the segmentation perfor-
mance of US images by leveraging unlabeled data, a practice that is garnering
increasing research interest.

Despite the progress in semi-supervised learning for US image segmentation,
challenges persist due to common US imaging issues like shadow artifacts and
unclear boundary lines. Most semi-supervised approaches rely on CNN archi-
tectures, which may lead to under-segmentation or over-segmentation due to
their localized processing nature. In contrast, Transformer-based models offer a
promising alternative. They excel in capturing wide-ranging, non-local interac-
tions, potentially resolving CNNs’ inherent limitations. These models are adept
at identifying and assimilating features from distant but visually similar re-
gions, thus improving network feature discrimination. However, their effective-
ness largely hinges on having access to extensive annotated datasets—a condition
seldom met in medical imaging due to the limited availability of labeled data.
Thus, developing methods to efficiently train Transformer-based models with a
limited set of annotated data remains a formidable challenge in the area of US
image segmentation.

This paper proposes a novel framework, the Dual-Student and Teacher Com-
bining CNN and Transformer (DSTCT). Our approach uses a dual-student con-
figuration, employing cross-supervision with hard pseudo labels to expand the
training dataset. Additionally, our Consistency Learning with Soft Pseudo La-
bels (CLS) strategy aims to mitigate label noise and foster entropy minimization.
Given the stark differences between CNN and Transformer models, we introduce
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the Classifier Deterministic Difference (CDD) [8] to harmonize predictions be-
tween the two model types. The teacher model applies consistency regularization
(CR) constraints, guiding the dual-student networks. This involves using data
and model perturbations to align the dual-student networks’ prediction maps
with those of the teacher model, thus bolstering the overall model generalization.
The main contributions of our work include: (1) we present the Dual-Student
and Teacher Combining CNN and Transformer (DSTCT) framework. This new
approach significantly enhances the utility of unlabeled data in semi-supervised
segmentation of ultrasound (US) images; (2) our proposed framework effectively
integrates hard and soft pseudo-label learning, entropy minimization, and con-
sistency regularization; (3) through rigorous quantitative analysis, we establish
that our DSTCT framework surpasses the performance of ten existing semi-
supervised techniques in accurately segmenting the pubic symphysis and fetal
head (PSFH) in intrapartum ultrasound images.

2 Method

For general semi-supervised learning, the training set is composed of a labeled
dataset Dl

N with N labeled images and an unlabeled dataset Du
M with M (M >>

N) raw images, and the full training dataset is denoted as DN+M = Dl
N ∪Du

M .
For an image X ∈ Dl

N , its ground truth Y is available. But the ground truth is
not provided for X ∈ Du

M . Ps1 and Ps2 are the probability outputs derived from
student1 and student2, respectively. P ∗

s1 is student1’s soft pseudo labels.
An overview of the proposed DSTCT architecture is shown in Fig.1. It com-

prises a dual-student model and a single-teacher model. The dual-student model
consists of a CNN model UNet (namely student1) and a Transformer model
Swin-UNet (SUNet, namely student2), while the single-teacher model uses the
same Transformer model SUNet. In particular, our DSTCT tackles the semi-
supervised image segmentation from five various aspects: supervised learning
(Lsup), cross-supervision with hard pseudo labels (Lh), consistency learning with
soft pseudo labels (Ls), minimization of classifier determinacy discrepancy (Lcdd)
and consistency regularization constraints from the teacher model (Lcr). There-
fore, the overall training loss function for student1 or student2 can be defined
as:

Ltotal = Lsup + αLh + βLs + γLcdd + µLcr (1)
where α, β, γ and µ are trade-off weights, which were set α = 0.5, β = 1.0, γ =
3.0, and µ = 0.1 [18] , respectively, in the proposed cooperative training process.
Note: Lcdd is a common part of both students.
Supervised learning (Lsup). We use the labeled data to train the student
models. Cross-entropy loss Lce and Dice loss Ldice are used as follows:

Lsup =
1

2

∑
X∈Dl

N

(Lce(Ps1, Y ) + Ldice(Ps1, Y )) (2)

Cross-supervision with hard pseudo labels (Lh). The predictions between
the CNN and ViT have different properties, essentially in the output level. Based
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Fig. 1. An overview of the DSTCT architecture, where the black and grey parts are
the loss functions for student1 and student2, respectively

on their predictions, we employ argmax(.) function to yield the hard pseudo
labels for the cross-supervision between the peer networks. The cross-supervision
loss of unlabeled data is defined as:

Lh =
∑

X∈Du
M

Ldice(Ps1, argmax(Ps2)) (3)

Consistency learning with soft pseudo labels (Ls). However, the hard
pseudo labels generated by the maximum confidence are inevitably noisy, which
may cause confusion bias during the segmentation training. To further reduce
the noise of the hard pseudo labels and focus on unlabeled challenging regions,
a sharpening function [9, 20] is utilized to generate soft pseudo labels, which
can decrease the prediction uncertainty of the models. Soft pseudo labels can be
obtained as follows:

P ∗
s1 =

(Ps2)
1/τ

(Ps2)1/τ + (1− Ps2)1/τ
(4)

where τ is a hyper-parameter to control the temperature of sharpening, and is
set to 0.1 in our experiment [19]. Consistency learning is performed between the
probability output of one model and the soft pseudo label of the other. The final
loss function of consistency learning with soft pseudo labels is:

Ls =
∑

X∈DN+M

E[Ps1, P
∗
s1] (5)
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where E is the Mean Squared Error (MSE) loss.
Classifier Determinacy Disparity (Lcdd). The diversity caused by structural
differences between CNN and ViT may compromise the model’s performance.
Directly aligning the discrepancy between the predictions is somewhat not con-
fident. Therefore, we investigate classifier discrepancy by Bi-classifier Prediction
Relevance Matrix: A = Ps1Ps2

T [8]. The sum of the diagonal elements in matrix
A represents the consistency of the classifier’s predictions, while the off-diagonal
elements reflect the uncertainty of the predictions. We aim to maximize the for-
mer and minimize the latter. The minimizing classifier determinacy discrepancy
loss is defined as follows:

Lcdd =
∑

X∈DN+M

[
C∑

m,n=1

Am,n −
C∑

m=1

Am,m] (6)

where Am,n denotes the element in the m-th row and n-th column, and C is the
number of categories.
Consistency Regularization (Lcr). The teacher architecture aims to mini-
mize discrepancies between the predictions of the dual-student networks and the
teacher network under both data and network perturbations. The consistency
loss between the output probabilities of them is defined as follows:

Lcr =
∑

X∈DM

E[ft(X; θ̄;σ
′
), fs1(X;φ;σ)] (7)

where σ and σ
′
represent different data perturbations and random dropout op-

erations at the network layer, and φ and θ̄ represent the network parameter of
student1 and teacher. θ̄ is updated via exponential moving average (EMA) from
student2’s network. E is the MSE loss.

3 Experiments and Results

3.1 Dataset and Implementations

Dataset. This study leverages a dataset sourced from the MICCAI 2023 Grand
Challenge [10], focused on the segmentation of the pubic symphysis (PS) and
fetal head (FH). The comprehensive dataset includes 5,101 images, which have
been methodically partitioned into training (70%), validation (10%), and testing
(20%) subsets. Each image is paired with a precise segmentation mask delineat-
ing the FH and the PS, enabling the effective development and evaluation of
pertinent segmentation models.
Implementation details. In this study, a compact version of ViT, pre-initialized
with ImageNet weights is used for Swin-UNet (SUNet) architecture. The im-
plementation was implemented on an Ubuntu 20.04 operating system, utiliz-
ing Python 3.8, PyTorch 1.10, and CUDA 11.3. A Tesla T4 GPU facilitated
the computations. The network training regimen encompassed 30,000 iterations,
employing the Stochastic Gradient Descent (SGD) optimizer, configured with
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a momentum of 0.9 and a weight decay of 0.0001. We adopted a batch size
16, comprising an equal split of eight labeled and eight unlabeled images to
support semi-supervised learning paradigms. The training commenced with an
initial learning rate of 0.01, which was dynamically adjusted using a clustering-
based learning rate strategy. Additionally, we introduced data noise perturbation
within the range of [-0.2, 0.2] to enhance model robustness against input vari-
ability.
Comparison Strategy. To verify the effectiveness of our DSTCT, we compare
it with full/limited supervision (FS/LS) baselines and several state-of-the-art ap-
proaches for semi-supervised segmentation, including mean teacher (MT) [16],
deep adversarial network (DAN) [22], uncertainty-aware mean teacher (UAMT)
[21], cross consistency training (CCT) [13], cross pseudo-supervision (CPS) [5],
cross teaching between CNN and transformer (CTCT) [11], interpolation con-
sistency (ICT) [17], deep co-training (DCT) [14], self-integration method based
on consent-aware pseudo-labels (S4CVnet) [18], collaborative Transformer-CNN
learning (CTCL) [9].
Evaluation Metrics. The performance of these models was quantitatively eval-
uated using three established metrics: the Dice Similarity Coefficient (DSC),
the 95% Hausdorff Distance (HD95), and the Average Surface Distance (ASD).
These metrics facilitate a thorough assessment of the segmentation models’ ac-
curacy and consistency, critical for validating their clinical applicability.

3.2 Comparison with Other Methods

Table 1 presents the quantitative outcomes on the PSFH dataset when trained
with 20% of the total labeled training data. Notably, our proposed method sig-
nificantly outperforms existing state-of-the-art approaches across most evalua-
tion metrics. Remarkably, with only 20% labeled data for training, our DSTCT
achieves 89.3% DSC performance, only 6% inferior to the upper bound perfor-
mance.

Table 1. Quantitative comparison. The best result is in bold.

Labeled Method PS FH PSFH
DSC↑ ASD↓ HD95 ↓ DSC↑ ASD↓ HD95 ↓ DSC↑ ASD↓ HD95 ↓

20%

LS(UNet) 0.835 0.793 3.875 0.897 1.901 8.868 0.866 1.347 6.372
MT 0.803 0.760 5.143 0.872 2.912 13.608 0.837 1.836 9.376
ICT 0.847 0.813 3.806 0.896 1.694 7.191 0.871 1.254 5.498
UAMT 0.830 0.801 4.375 0.887 1.661 7.296 0.859 1.231 5.836
DAN 0.824 1.048 4.583 0.886 1.443 6.871 0.855 1.246 5.727
DCT 0.801 1.009 4.960 0.879 2.081 9.044 0.840 1.545 7.002
CCT 0.824 0.596 4.388 0.886 2.693 11.604 0.855 1.645 7.996
CPS 0.829 0.701 3.788 0.883 1.385 5.952 0.856 1.043 4.870
CTCT 0.836 0.980 4.265 0.908 1.340 6.126 0.872 1.160 5.196
CTCL 0.826 1.197 5.509 0.900 0.747 5.107 0.863 0.972 5.308
S4CVnet 0.838 0.823 3.962 0.906 0.975 4.658 0.872 0.899 4.310
OURS 0.852 0.581 3.331 0.935 0.351 2.150 0.893 0.466 2.740

100% FL(UNet) 0.943 0.113 1.103 0.964 0.086 0.605 0.953 0.099 0.854
FL(SUNet) 0.931 0.143 1.248 0.958 0.189 0.789 0.944 0.166 1.018
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Additionally, Fig.2 offers visual comparisons between the segmentation re-
sults. These visualizations highlight that our method achieves more accurate
segmentation with reduced false positives and fewer missed segmentation ar-
eas. A detailed examination of the comparative experiment results reveals that
our proposed framework effectively integrates classical semi-supervised learning
strategies, including pseudo-label learning, entropy minimization, and consis-
tency regularization. This integration underscores the efficacy of our approach
in leveraging semi-supervised learning techniques for improved segmentation per-
formance.

Fig. 2. Visual comparison of different methods when using 20% labeled data for testing.
The figure shows the ground truth in red and the predicted results in green.

3.3 Ablation Study

Training strategy analysis. Each component of our DSTCT contributes dif-
ferently to the enhancement of semi-supervised learning. From Table 2, it can
be seen that each of the components and the combination of them can improve
the PSFH segmentation performance, thus demonstrating the effectiveness of
our method. Specifically, CDD and CR improve the DSC performance by 0.8%
and 0.6%, respectively. By combining CLS, CDD and CR, the DSC performance
is improved by 2.1%, the ASD is decreased by 0.626 mm, and the HD95 is de-
creased by 3.767 mm.

Different combination of Transformer and CNN. As illustrated in Table
2, The first row represents the combination of models proposed by the DSTCT
framework, and its result is the best. While collaboratively training the SUNet-
SUNet-SUNet or UNet-UNet-UNet models, the performance is relatively inferior
to the UNet-SUNet-SUNet models, indicating the effectiveness of the comple-
mentary of these two models.
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Table 2. Different strategies. Where s1, s2, and t are student1,student2, and teacher,
respectively. The initial values of the trade-off weights of the loss function are α = 0.1,
β = 0.1, γ = 0.01, and µ = 0.1, respectively. The best result is in bold.

Designs PS FH PSFH
CLS CDD CR DSC↑ ASD↓ HD95 ↓ DSC↑ ASD↓ HD95 ↓ DSC↑ ASD↓ HD95 ↓

0.836 0.688 3.821 0.890 2.133 9.741 0.863 1.410 6.781√
0.827 1.048 4.413 0.892 1.542 6.607 0.860 1.295 5.510√
0.830 1.002 4.323 0.912 0.815 3.775 0.871 0.909 4.049√
0.838 0.844 3.892 0.900 1.274 5.546 0.869 1.059 4.719√ √
0.848 0.731 3.819 0.902 1.555 2.493 0.875 1.143 5.294√ √
0.835 0.881 3.985 0.914 0.775 6.769 0.874 0.828 3.748√ √
0.842 0.606 3.594 0.891 1.742 7.664 0.866 1.174 5.829√ √ √
0.837 0.598 3.734 0.932 0.429 2.295 0.884 0.514 3.014

s1 s2 t
UNet SUNet SUNet 0.837 0.598 3.734 0.932 0.429 2.295 0.884 0.514 3.014
SUNet UNet UNet 0.845 0.902 4.205 0.890 1.515 6.305 0.867 1.208 5.255
UNet UNet UNet 0.851 0.781 3.957 0.900 1.401 6.394 0.876 1.091 5.175
SUNet SUNet SUNet 0.820 0.966 4.336 0.920 0.433 2.810 0.870 0.699 3.573

Parameter analysis. The parameters α, β and γ are essential to control the im-
portance of each loss in the objective function. Table 3 lists the results obtained
with different parameter settings. When α = 0.5, β = 1.0, γ = 3.0, DSTCT
achieves the best DSC performance of 89.32%.

Table 3. Initial value analysis of the trade-off weights of the loss function. The results
of the PSFH segmentation are shown.

γ 1.0 2.0 3.0
α β DSC↑ ASD↓ HD95 ↓ DSC↑ ASD↓ HD95 ↓ DSC↑ ASD↓ HD95 ↓
0.5 1.0 0.8701 0.8985 4.1565 0.8917 0.4741 2.7726 0.8932 0.4659 2.7405
1.0 1.0 0.8671 0.7914 4.5107 0.8923 0.4979 2.7862 0.8912 0.4867 2.7949
2.0 1.0 0.8829 0.6551 3.2419 0.8903 0.5501 2.8618 0.8931 0.5049 2.7588
0.5 2.0 0.8732 0.7037 3.8760 0.8890 0.4487 2.7636 0.8839 0.4840 2.9388

4 Conclusion

In this study, we introduce a novel framework termed Dual-Student and Teacher
Combining CNN and Transformer (DSTCT), designed to leverage the distinct
inherent characteristics of CNN and ViT models through a synergistic train-
ing approach. The DSTCT framework intricately combines three key compo-
nents: Consistency Learning with Soft Pseudo Labels (CLS), minimizing Clas-
sifier Determinacy Discrepancy (CDD), and Consistency Regularization (CR)
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through mean teacher architecture. This comprehensive integration aims to bol-
ster the generalization capabilities of CNNs. Empirical evaluations conducted
on a widely recognized benchmark indicate that the DSTCT framework signif-
icantly enhances the performance of CNN architecture, outstripping competing
state-of-the-art methods by a substantial margin. Furthermore, this study cat-
alyzes advancing the application of Transformer models within the realm of semi-
supervised image segmentation tasks, encouraging further research and develop-
ment in this promising area. The PSFHS Challenge of MICCAI 2023 and the
IUGC Challenge of MICCAI 2024 are available at https://ps-fh-aop-2023.grand-
challenge.org/ and https://codalab.lisn.upsaclay.fr/competitions/18413, respec-
tively.
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