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Abstract. Due to blurred boundaries between the background and the
foreground, along with the overlapping of different tumor lesions, ac-
curate segmentation of brain tumors presents significant challenges. To
tackle these issues, we propose a causal intervention model designed for
brain tumor segmentation. This model effectively eliminates the influ-
ence of irrelevant content on tumor region feature extraction, thereby
enhancing segmentation precision. Notably, we adopt a front-door ad-
justment strategy to mitigate the confounding effects of MRI images on
our segmentation outcomes. Our approach specifically targets the re-
moval of background effects and interference in overlapping areas across
tumor categories. Comprehensive experiments on the BraTS2020 and
BraTS2021 datasets confirm the superior performance of our proposed
method, demonstrating its effectiveness in improving accuracy in chal-
lenging segmentation scenarios.

Keywords: Brain tumor segmentation · Causal inference · Medical im-
age processing.

1 Introduction

Brain tumors, among the most common and deadly forms of cancer, originate
from glial cells and pose a severe threat to human health and life. Magnetic
Resonance Imaging (MRI) is extensively used in detecting brain tumors due to
its high soft tissue contrast and non-invasive approach. However, manual seg-
mentation of tumors from MRI scans is complex and time-consuming due to
the tumors’ variable sizes, shapes, potential locations throughout the brain, and
the minor contrast differences between tumorous and healthy tissues [4, 20, 11].
With the advancement of computer technology and deep learning techniques,
numerous automated brain tumor segmentation methods have been proposed.
These automated segmentation methods can significantly enhance segmentation
efficiency, alleviate the burden of clinical doctors, and enable real-time moni-
toring of brain tumor surgical procedures, thereby ensuring surgical safety [15,
14].
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Recent studies focused on deep learning-based approaches for brain tumor
segmentation [18, 30, 5, 13, 16]. The nnU-Net [12] framework enhances U-Net ar-
chitecture with data augmentation, region-specific training, and advanced post-
processing to achieve superior segmentation. The DMFNet (Dilated Multi-Fiber
Network) [6] reduces model complexity through group convolutions, utilizing
dilated convolutions and feature fusion for improving accuracy in tumor seg-
mentation. As Transformer’s strong ability to capture long-range dependencies
[23, 9], many works have applied Transformers to medical image segmentation
and achieved favorable results [28, 21, 26, 19]. The TransBTS [25] combined the
Transformer with 3D CNN for spatial feature extraction, leading to notable seg-
mentation performance gains. Despite the significant advancements achieved by
these methods, challenges still persist in the task of brain tumor segmentation.
For instance, these methods overlook the interference of background and healthy
tissue regions in MRI images, as well as overlooking the interactions between dif-
ferent tumor categories.

To tackle the challenges previously mentioned, we propose a novel causal
brain tumor segmentation method. The proposed method introduces the inter-
mediate variable R through front-door adjustment to mitigate the confounding
effects of MRI images on the segmentation results. The causal method is imple-
mented by the region causality module and the category causality module. The
region causality module removes the effect of background and healthy tissue.
The category causality module can eliminate interference in overlapping areas
of different categories of tumors. These causality modules are designed to mit-
igate the impact of extraneous information on tumor region feature extraction,
thereby enhancing segmentation accuracy.

In summary, the main contributions of this paper can be described as follows:

– We propose a causal approach to brain tumor segmentation that significantly
reduces the interference of non-relevant content on tumor region feature
extraction, leading to improve segmentation accuracy.

– We propose front-door adjustment to remove the confounder to find the real
causal relation between the MRI image and the segmentation mask. The pro-
posed method removes the effect of background and eliminates interference
in overlapping areas of different tumor categories.

– Ablation and comparative studies demonstrate the effectiveness of our pro-
posed modules and method. Our method outperforms existing state-of-the-
art methods on the BraTS2020 and BraTS2021 datasets.

2 Method

In this paper, we propose a novel cascade causal model to remove the influence of
background and the interference between different tumor categories. Fig.1 shows
the structure of causal model. X denotes brain MRI image, R denotes all tumor
regions, C denotes confounder set, Y denotes segmentation mask of each tumor
category.
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Fig. 1. The causal graph of the tumor segmentation. X denotes brain MRI image, C
denotes confounder set, R denotes all tumor regions, Y denotes segmentation mask of
each category.

The goal of our work is to learn model’s parameters to get P (Y |X). In this
step, we hope to remove the confounder to find the real causal relation between
X and Y . In order to achieve the goal, we introduce the intermediate variable
R, which can be used to build the confounder set and utilize the front-door
adjustment to handle the optimization problem.

P (Y |X) ≈ P (Y |do(X)) = P (R|X)P (Y |do(R)). (1)

To estimate P (Y |do(R)), we can apply the back-door intervention to cut off
the link R← X ← C → Y . Therefore,

P (Y |do(R)) =
∑
c

P (Y |do(R), c)P (c|do(R))

=
∑
c

P (Y |R, c)P (c).
(2)

Finally, we can calculate P (Y |do(X)):

P (Y |do(X)) = P (R|X)
∑
c

P (Y |R, c)P (c), (3)

where, P (R|X) represents that R is achieved from X. R denotes all tumor regions
of different categories, which will have obviously relation with Y . There are
clear interference items c between the two, such as the background interference
mentioned above and the related interference of different tumor categories. In
the specific implementation, we designed two modules respectively for P (R|X)
and

∑
c P (Y |R, c)P (c). The framework is shown in Fig.2.

2.1 Region Causality Module

In this section, we present the implementation method for P (R|X), introducing
the intermediate variable R to ensure the blocking of confounding from X to Y .
Given multimodal MRI images X, features are extracted using the encoder of U-
Net. Subsequently, a simple segmentation head, comprising a residual block and
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Fig. 2. The architecture of the proposed method. Firstly, the encoder of the U-Net
is used to extract the image features. The region causality module obtains a rough
segmentation map R from the encoded features through the segmentation head. The
rough segmentation map R is multiplied with the encoded features to eliminate con-
founders and get R′. Then, both the features and the rough segmentation map are
input into the category causality module to eliminate category interference. Finally,
feature resolution is gradually restored through the decoding path, resulting in the
final segmented map.

3D convolution followed by a Sigmoid function, is employed to output tumor
regions R of different categories. Multiplying this tumor region of interest by
the encoded features yields R′, removing the effect of background. Upsample
tumor regions R to the size of ground truth to obtain R′′, and then compute
the loss between R′′ and ground truth using the cross-entropy function. By
supervising R′′, we ensure that R does not contain confounding interference
from the background and healthy area.

L1(R
′′, T ) = −

N∑
i=1

K∑
k=1

R′′
i,k log(Ti,k), (4)

where N denotes the number of voxels, K denotes the number of classes, i
denotes the index for voxels, k denotes the index for classes, R′′ = R′′

i,k represents
the predicted probability map, and T = Ti,k represents the ground truth.

2.2 Category Causality Module

The causal intervention
∑

c P (Y |R, c)P (c) was achieved by predicting segmenta-
tion mask Y . Because it’s challenging to collect all confounders, we approximate
it as a fixed confounder dictionary C = [c1, ..., cK ] to construct the confounder
set C in the size of K × h × w × d matrix, where K is the number of cate-
gories in the dataset and h,w, d represents the feature dimension of the con-
founder set. ck is obtained by averaging the region of tumor features of kth
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category. The segmentation network finally computes the probabilities of each
tumor category through a Softmax funciton: P (Y |R, c) = Softmax(fy(R, c)),
where fy() approximates the logits for K tumor categories. Multiplying the en-
coded features by R yields R′, removing the effect of background. Therefore,
P (Y |R, c) = P (Y |R′, c) = Softmax(fy(R

′, c)). And we have

P (Y |do(R′)) := Ec [Softmax(fy(R
′, c))] . (5)

Motivated by recent works [24, 22], we can integrate outer expectation into
the Softmax function by employing the Normalized Weighted Geometric Mean
(NWGM) as:

P (Y |do(R′)) ≈ NWGM(Ec [Softmax(fy(R
′, c))])

=

∏
c exp(fy(R

′, c))P (c)∑K
k=1

∏
c exp(fy(R

′, c))P (c)

=
exp(Ec [fy(R

′, c)])∑K
k=1 exp(Ec [fy(R′, c)])

= Softmax(Ec(fy(R
′, c))).

(6)

The fy(R
′, c) is written as linear function W1R

′ + W2·gy(c), where W1,
W2 denote fully connected layers. We can place E into the linear function as:
Softmax(W1[R

′] +W2Ec[gy(c)]).
We adopt the category attention to explore the interactions between each

c in the confounder set C and the tumor region feature R′. Then we can have
Ec[gy(c)] =

∑K
k=1 Softmax(([R′, ck])P (ck))R

′, where P (ck) represents the proba-
bility distribution of ck in dataset. The category causality module is implemented
by an attention module as shown in Fig. 2.

Overall loss. As shown in Fig.2, The final segmentation mask is learned
under the supervision of ground truth by Dice loss L2.

L2(Y, T ) = 1− 1

K

K∑
k=1

2
∑N

i=1 Yi,kTi,k∑N
i=1 Yi,k +

∑N
i=1 Ti,k

, (7)

where N denotes the number of voxels, K denotes the number of classes, i
denotes the index for voxels, k denotes the index for classes, Y = Yi,k represents
the predicted final segmentation mask, and T = Ti,k represents the ground truth.

The cross-entropy loss L1 is used to supervise the generation of R′′. Conse-
quently, the total loss of the proposed method is expressed as:

L = L1(R
′′, T ) + L2(Y, T ). (8)

3 Experiments

3.1 Experimental Setup

We evaluate the segmentation performance of our method on the public BraTS2020
and BraTS2021 datasets[17, 2, 3, 1]. The BraTS2020 dataset consists of a train-
ing set of 369 labeled cases and a validation set of 125 unlabeled cases. The
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BraTS2021 contains MRI image data from 1251 cases. We divide the BraTS2021
dataset into training, validation, test using a ratio of 4:1:1. Each case has four
modalities: T1, T2, T1ce, and FLAIR. The ground truth is labeled by radiologists
into four regions: background, enhancing tumor (ET), peritumoral edema (ED),
and the necrosis and non-enhancing tumor core (NCR/NET). The segmenta-
tion results are evaluated on three regions: enhancing tumor (ET, the enhancing
tumor), whole tumor (WT, the sum of peritumoral edema, enhancing tumor,
necrotic and non-enhancing tumor), and tumor core (TC, the sum of enhancing
tumor, necrotic and non-enhancing tumor). We evaluate the segmentation per-
formance of our method with the Dice score and the Hausdorff Distance (95%)
metrics.

Our experiment is operated by Pytorch and trained for 500 epochs using an
NVIDIA GeForce RTX 4090 with 24GB memory. We use the Rectified Linear
Unit (ReLU) activation function and group normalization, and the batch size is
set to 1. We employ Adam optimizer with a learning rate of 0.0001. We apply
the following data augmentation methods: random flip, random scale, random
cropping, random rotation, and random intensity shift.

3.2 Results and Analysis

Table 1 and Table 2 show the performance comparison of the proposed method
with other state-of-the-art methods on the BraTS2020 and BraTS2021 datasets.
In Table 1, our method achieves Dice scores of 78.90%, 90.44%, 85.33% and
Hausdorff Distances of 26.46mm, 5.43mm, 5.99mm on ET, WT, TC on the
BraTS2020 dataset. Compared to TransBTS [25], the Dice scores of proposed
method for ET, WT, and TC were higher by 0.17%, 0.35%, and 3.60%, and the
Hausdorff Distances for TC were shorter by 3.78 mm. Additionally, compared to
other models, our method demonstrated superior performance in the challenging
segmentation of tumor core regions. In Table 2, Our method also achieves supe-
rior performance with significant improvements. From the experimental results
in Table 1 and Table 2, we can see that the proposed method has eliminated the
influence of the background on the tumor area and achieved higher segmentation
scores in tumor regions. Furthermore, we achieved favorable results across three
different tumor regions.

Table 3 presents the ablation study of each module on the BraTS 2020
dataset. RCM denotes the region causality module and CCM represents the
category causality module. It can be seen that both the region causality mod-
ule and the category causality module improved the segmentation results. After
adding the region causality module, all performance metrics of the network have
improved. The Dice scores increased 1.17%, 0.37%, and 2.46% on ET, WT, and
TC. This is because region causality can effectively eliminate the influence of
the background region, providing representative information for the segmenta-
tion of tumor regions. Employing the category causality module increases the
Dice scores of three tumor regions by 2.11%, 0.06%, and 2.56%, respectively. This
is because tumor category causality module eliminates interference between dif-
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Table 1. Comparison with state-of-the-art methods on the BraTS2020 dataset.

Method Dice Score (%) Hausdorff Dist. (mm)
ET WT TC ET WT TC

3D U-Net [8] 68.76 84.11 79.06 50.98 13.37 13.61
DMFNet [6] 76.41 90.08 81.50 35.17 7.17 12.17
DAU-Net [10] 78.60 89.80 83.00 27.60 5.40 9.80
nnU-Net [12] 78.88 90.38 82.50 32.74 5.35 11.78
TransUNet [7] 78.42 89.46 78.37 12.85 5.97 12.84
AugTransU-Net [29] 78.60 89.80 81.90 24.31 5.56 9.56
CH-UNet [27] 78.00 90.00 82.00 26.58 4.43 12.35
TransBTS [25] 78.73 90.09 81.73 17.95 4.96 9.77
Ours 78.90 90.44 85.33 26.46 5.43 5.99

Table 2. Comparison with state-of-the-art methods on the BraTS2021 dataset.

Method Dice Score (%) Hausdorff Dist. (mm)
ET WT TC ET WT TC

3D U-Net [8] 83.39 89.59 86.28 6.15 6.18 11.49
TransBTS [25] 80.35 89.25 85.35 7.83 15.12 8.21
NestedFormer [26] 85.62 90.12 88.18 6.08 10.23 6.43
DBTrans [28] 86.70 92.41 90.26 6.13 9.84 6.24
Ours 87.21 92.32 91.19 6.43 13.92 5.85

Table 3. Ablation study for different modules on the BraTS 2020 dataset.

Model RCM CCM Dice Score (%) Hausdorff Dist. (mm)
ET WT TC ET WT TC

1 - - 76.04 90.16 82.62 27.56 5.89 6.95
2 + - 77.21 90.53 85.08 32.58 5.02 6.14
3 - + 78.15 90.22 85.18 29.43 5.10 6.21
4 + + 78.90 90.44 85.33 26.46 5.43 5.99

ferent tumor categories, imparting distinctiveness to tumor regions of various
categories.

Fig. 3 displays the visual segmentation results on the BraTS2020 dataset.
The red, green, and yellow regions represent the peritumoral edema, enhancing
tumor and necrosis and non-enhancing tumor. The yellow boxes in the first
column of images represent the tumor regions we aim to segment. The blue and
red boxes represent the segmentation results of tumor areas by different methods.
From the red boxes, it is evident that other methods have incorrectly identified
tumor regions as healthy tissue areas, while our method is not affected by the
confounding interference of healthy areas on tumor regions, thus successfully
identifying the tumor areas. Additionally, as shown by the blue boxes in the first
row, other methods mistakenly identify enhancing tumor as necrosis and non-
enhancing tumor, while our method mitigates this misjudgment. The blue boxes
in the second row reveal that other methods incorrectly recognize edema region
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Fig. 3. The visual comparison results on the BraTS2020 dataset. The red region repre-
sents the necrosis and non-enhancing tumor; the green region indicates the peritumoral
edema; and the yellow region represents the enhancing tumor.

as necrosis and non-enhancing region, while our method accurately distinguishes
these two types of regions. Overall, the visualization results demonstrate that
our method can segment tumor regions more accurately and distinguish between
different types of tumor regions more clearly. This proves that our causal model
can effectively eliminate the confounding interference of background and healthy
areas on tumor regions, and it can also mitigate the confounding interference
between different tumor categories.

4 Conclusion

In this paper, we propose a causal intervention model for brain tumor segmenta-
tion. We introduce the front-door adjustment to mitigate the confounding effect.
The front-door adjustment is implemented by the region causality module and
the category causality module. The proposed method effectively mitigates inter-
ference emanating from both background and healthy tissue on tumor regions,
and additionally, alleviates interference amongst various tumor categories. The
ablation study demonstrates the effectiveness of the region causality module and
the category causality module. The visual segmentation results demonstrate the
advantages of our proposed causal model in eliminating background interference
and interference between tumor categories. Experimental results demonstrate
the effectiveness of our proposed method on the BraTS2020 and BraTS2021
datasets. Our proposed causal segmentation method is effective and can be ex-
tended to other medical tasks. Our future work will explore the model’s ro-
bustness across different MRI machines, analyze computational efficiency and
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examine the algorithm’s performance on the domain generalization problem in
MRI segmentation.
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