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Abstract. Human brains are typically modeled as networks of Regions
of Interest (ROI) to comprehend brain functional Magnetic Resonance
Imaging (fMRI) connectome for Autism diagnosis. Recently, various deep
neural network-based models have been developed to learn the represen-
tation of ROIs, achieving impressive performance improvements. How-
ever, they (i) heavily rely on increasingly complex network architecture
with an obscure learning mechanism, or (ii) solely utilize the cross-
entropy loss to supervise the training process, leading to sub-optimal
performance. To this end, we propose a simple and effective Geometric-
oriented Brain Transformer (GBT) with the Attention Weight Matrix
Approximation (AWMA)-based transformer module and the geometric-
oriented representation learning module for brain fMRI connectome anal-
ysis. Specifically, the AWMA-based transformer module selectively re-
moves the components of the attention weight matrix with smaller sin-
gular values, aiming to learn the most relevant and representative graph
representation. The geometric-oriented representation learning module
imposes low-rank intra-class compactness and high-rank inter-class di-
versity constraints on learned representations to promote that to be dis-
criminative. Experimental results on the ABIDE dataset validate that
our method GBT consistently outperforms state-of-the-art approaches.
The code is available at https://github.com/CUHK-AIM-Group/GBT.

Keywords: Autism diagnosis · Regions of Interest · Representation
learning · Brain transformer network

1 Introduction

Autism is an ineradicable neurodevelopmental disability characterized by chal-
lenges with social skills and communication [7, 10, 18, 20, 30], where functional
Magnetic Resonance Imaging (fMRI) is a powerful neuroimaging tool that de-
picts human brains as networks of Regions of Interest (ROIs) to enhance the
interpretation and assessment of Autism diagnosis. In brain fMRI connectome
analysis, some ROIs can co-activate or co-deactivate simultaneously when per-
forming cognitive-related tasks such as action, language, and vision. Based on
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this pattern, brain ROIs can be classified into diverse functional modules to an-
alyze diseases towards their diagnosis, progress understanding, and treatment.
In recent decades, due to the powerful representation capability of deep learn-
ing, a series of brain-aware specialized deep neural networks have been designed
for brain fMRI connectome analysis. Early works designed Convolutional Neural
Network (CNN)-based brain networks with specific convolutional filters to con-
sider the locality structure of the brain [14,16,26]. Recently, Graph Neural Net-
work (GNN)-based brain networks [11, 17, 22–24] and Transformer (TF)-based
brain networks [12,13,32] have attracted widespread attention due to their pow-
erful graph representation learning capability, which is well fit the non-euclidean
properties of brain fMRI data.

Although numerous deep neural networks are deliberately well-designed to
conduct effective representation learning for Autism diagnosis and have achieved
competitive classification performance [1–3, 6, 21, 25, 28, 29], there remain sev-
eral unsolved challenges with two main limitations. Firstly, existing works heav-
ily rely on increasingly complex network architecture with an obscure learning
mechanism to implicitly learn representations of ROIs, which may stick into
over-fitting problems due to the introduced inductive biases resulting from so-
phisticated structures. Thus, it is expected that the network could emphatically
focus on the principal component information of brain fMRI data, allowing us to
study the most relevant and representative graph representation to reveal the in-
teractions and functional organization between different brain regions. Secondly,
they solely utilize the cross-entropy loss to conduct supervised learning of the en-
coder and the classifier, ignoring the presumable blurred boundaries issue within
cross-boundary samples, leading to sub-optimal performance. Such a restriction
inspires us to identify and compare brain function differences between different
individuals to achieve distinguishable guidance toward embedding representation
learning, promoting the learned representation to be discriminative.

To this end, we propose a novel Geometric-oriented Brain Transformer (GBT)
with the Attention Weight Matrix Approximation (AWMA)-based transformer
module and the geometric-oriented representation learning module for brain
fMRI connectome analysis. Specifically, the AWMA-based transformer module
focuses on learning the most relevant and representative graph representation
of brain ROIs by selectively removing the components of the attention weight
matrix with smaller singular values. Moreover, the geometric-oriented repre-
sentation learning module imposes low-rank intra-class compactness and high-
rank inter-class diversity constraints on the learned embedding representation
to make it discriminative. Notably, such a discriminative representation is ca-
pable of fitting the natural geometric properties of brain data that subjects
having the same disorder share similar brain network patterns, which means
disorder-specific representations across instances are preferable. Experimental
results on the ABIDE dataset demonstrate that the proposed method GBT
consistently outperforms state-of-the-art (SOTA) approaches, e.g., GBT out-
performs the second-best comparisons with a 6.00% improvement on ACC. In
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Fig. 1. Illustration of our method GBT, which mainly includes the AWMA-based trans-
former module and the geometric-oriented representation learning module.

addition, we conduct a series of ablation studies on each component of GBT to
verify its effectiveness. In summary, our contributions are as follows:

– We propose a novel AWMA-based transformer module to learn the most rel-
evant and representative representation for brain fMRI connectome analysis.

– We propose a novel geometric-oriented representation learning module that
combines low-rank intra-class compactness and high-rank inter-class diver-
sity to enhance the discriminative capability of the representation.

– Both proposed modules are plug-and-play for the existing brain transformer
network architecture.

– Experimental results on ABIDE validate the effectiveness of our method
GBT in Autism diagnosis, e.g., GBT achieves a 6.00% ACC improvement
than SOTA approaches.

2 Proposed Method

In this section, we introduce our network in detail, where the overall network
architecture is shown in Fig. 1. Specifically, our network consists of the fol-
lowing parts: an AWMA-based transformer module to conduct the matrix ap-
proximation toward the attention weight matrix of the transformer encoder and
a geometric-oriented representation learning module with low-rank intra-class
compactness and high-rank inter-class diversity constraints to improve the em-
bedding learning capability of our network.
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2.1 Problem Definition

In brain fMRI connectome analysis, human brains are popularly depicted as
networks of ROIs given an atlas, where the set of neural connections is de-
fined as the Pearson correlation coefficient matrix X ∈ Rv×v of pairwise ROIs
between the blood-oxygen-level-dependent (BOLD) signal series. v is the num-
ber of ROIs. To fit the natural topological properties of brain data, one of the
most commonly used paradigms is to employ a vanilla transformer to obtain the
graph representation Zl with l being the number of layers. For Zi on the i-th
layer, three full-connected layers, parametrized by layer-specific weight matri-

ces WQ ∈ Rv×dQ

, WK ∈ Rv×dK

, and WV ∈ Rv×dV

, are introduced to obtain
the query matrix Q, the key matrix K, and the value matrix V, respectively.
After that, the LeakyReLU activation function F leak [19] is applied on the mul-
tiplication between Zi−1 and the corresponding weight matrices. The softmax
function Fsoft is then utilized to obtain the attention weight matrix WA

i of
the transformer encoder. Afterward, the output is normalized by a multi-head
self-attention module and a concatenation operation, denoted as Fmcat.

The corresponding expressions are formulated as

Zi = Fmcat
(
WA

i V
)
Wi, s.t. WA

i = F soft

(
QKT√

dK

)
, Z0 = X,

Q = F leak
(
Zi−1W

Q
)
,K = F leak

(
Zi−1W

K
)
,V = F leak

(
Zi−1W

V
)
.

(1)

2.2 AWMA-based Transformer Module

To avoid the over-fitting problem, we propose an AWMA-based transformer
module for developing a robust brain network to learn the most relevant and
representative graph representation, as shown in Figure 1 (a). Specifically, we
replace the attention weight matrix WA

i of the transformer encoder at the i-th
layer with its rank k approximation WLR

i being

WLR
i = LkΣkR

T
k , s.t. WA

i = LΣRT, (2)

where L, Lk, Σ, Σk, R
T, and Rk is the left-singular matrix, the matrix formed

by the first k columns of L, a diagonal matrix containing the singular values,
the k-th principal sub-matrix of Σ, the conjugate transpose of the right-singular
matrix, and the matrix formed by the first k columns of R, respectively. It is
well-known that Eckart-Young-Mirsky theorem [8] has proven singular value de-
composition is the optimal solution of the matrix approximation [31] by removing
the components with smaller singular values. By combining the Eqs. (1) and (2),
the learned representation can be formulated as

Zi = Fmcat
(
WLR

i V
)
Wi. (3)



GBT: Geometric-oriented Brain Transformer for Autism Diagnosis 5

(a) (b)

Fig. 2. Visualization of the skewed synthetic data with two classes. (a) Synthetic data
involving cross-boundary samples. (b) Geometric-oriented representation with low-rank
intra-class compactness and high-rank inter-class diversity. To avoid overfitting, we
used the rank k approximation with SVD, the dropout regularization technique with
dropping-out neurons, and the pooling strategy with aggregating local information.

2.3 Geometric-oriented Representation Learning Module

To enforce the learned representation to be discriminative, we design a geometric-
oriented representation learning module with low-rank intra-class compactness
and high-rank inter-class diversity constraints, named the geometric-oriented
loss function. Specifically, we impose the low-rank constraint on the learned
embedding representation within the same class, making the intra-class samples
compact. Moreover, we encourage the whole features with inter-class diversity
based on a high-rank constraint. Specifically, let Zc denote the subspace matrix
formed by the columns of Zl that lies in the c-th class, the geometric-oriented
loss function is as follows,

min
Zl

c∑
i=1

rank (Zi)− rank (Zl) , (4)

where the rank function is inherently non-convex, making it computationally
complex to optimize directly. Thus, we relax the rank function to its convex
formulation, also known as (a.k.a.) the nuclear norm, i.e.,

min
Zl

c∑
i=1

|Zi|∗ − |Zl|∗ , (5)

where the nuclear norm of a matrix is defined as the sum of its singular values.
More details of the relationship between the minimum-rank solution and the
nuclear norm minimization can be found in the published theoretical justifica-
tions [9, 27]. By minimizing Eq. (5), the learned representation can simultane-
ously achieve intra-class compactness and inter-class diversity, explicitly satis-
fying the brain fMRI data property that these subjects with the same disorder
share similar brain network patterns. Figure 2 shows via two illustrative examples
based on a synthetic dataset the visualization of using the geometric-oriented
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loss function as the objective function to qualitatively verify the methodology of
the proposed geometric-oriented representation learning module. Finally, for the
classification task, we first employ the MLP classifier FΘ to conduct supervised
learning via the cross-entropy loss Fce (Y,FΘ (Zl)) with Y being the ground
truth label, where the cross-entropy loss is the most widely used loss function
for supervised learning of the transformer encoder and the classifier [1,12]. Fur-
thermore, we additionally exploit the proposed geometric-oriented loss Eq. (5)
to supervise the whole training process, which can be written as

min
Zl

c∑
i=1

|Zi|∗ − |Zl|∗ + Fce (Y,FΘ (Zl)) . (6)

3 Experiments

3.1 Datasets

Previous works [1,12] commonly conduct the study of Autism on the open-source
dataset Autism Brain Imaging Data Exchange (ABIDE), which is a collabora-
tive initiative involving 17 international imaging sites [4]. Thus, we conduct
experiments on ABIDE to understand the neural bases of Autism. Specifically,
it aggregates and openly shares brain fMRI data of 1009 subjects where 516
individuals were diagnosed with Autism. The region definition is based on Crad-
dock 200 atlas [5]. This dataset comprises structural and resting-state fMRI data
and extensive phenotypic information, which are anonymous adhering to HIPAA
guidelines and the 1000 Functional Connectomes Project/INDI protocols.

3.2 Compared Methods

We evaluate the effectiveness of our method by comparing it with one CNN-
based brain network (BrainNetCNN [14]), three GNN-based brain networks
(BrainGNN [17], FBNETGEN [11], BrainGB [6]), and three TF-based brain
networks (Graphormer [32], BrainNetTF [12], and Com-BrainTF [1]).

3.3 Evaluation Metrics

We evaluate all the models on four commonly used evaluation metrics, i.e., the
area under the receiver operating characteristic curve (AUC), accuracy (ACC),
sensitivity (SEN), and specificity (SPE), where a higher value indicates a supe-
rior classification performance.

3.4 Training Procedure

For fair comparisons, we adopt [12] as our backbone network to conduct graph
representation learning, where we employ a two-layer multi-head self-attention
module with the number of attention heads being 4, the batch size being 64, and
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Table 1. Performance comparisons, where the bolded and underlined values indicate
the best and the second-best results, respectively.

Type CNN-based GNN-based TF-based

Method
BrainNetCNN BrainGNN FBNETGEN BrainGB Graphormer BrainNetTF Com-BrainTF

Our
[Neuroimage’17] [MIA’21] [MIDL’22] [TMI’22] [NeurIPS’21] [NeurIPS’22] [MICCAI’23]

AUC 74.90±02.40 62.40±03.50 75.60±01.20 69.70±03.30 63.50±03.70 80.20±01.00 79.60±03.80 84.74±04.57
ACC 67.80±02.70 59.40±02.30 68.00±01.40 63.60±01.90 60.80±02.70 71.00±01.20 72.50±04.40 78.50±06.50
SEN 63.80±09.70 36.70±24.00 64.70±08.70 63.70±08.30 78.70±22.30 72.50±05.20 80.10±05.80 80.21±09.38
SPE 71.00±10.20 70.70±19.30 62.40±09.20 60.40±10.10 36.70±23.50 69.30±06.50 65.70±06.40 76.92±03.85

the epoch number being 200. We use Adam [15] with an initial learning rate of
1e − 4 and a weight decay of 1e − 4. For the datasets, we randomly split 70%
for training, 10% for validation, and 20% for testing, which is the same as the
splits/evaluation strategy as the SOTA ones [1,12]. We perform the experiments
five times and report the average results with their standard deviations (i.e.,
mean ± std). For compared approaches, we directly report the performances
provided in the original papers [12] and [1]. The model is implemented with
PyTorch on NVIDIA GeForce RTX 4090.

3.5 Compared Results

Table 1 shows the comparisons between the proposed method and seven com-
pared approaches with four metrics on the ABIDE dataset, where we have the
following observations: (i) Our method GBT achieves almost the best perfor-
mance on all metrics and outperforms the SOTA approaches. For example, GBT
achieves a 6.00% improvement on ACC compared with the second-best method.
(ii) The TF-based brain networks perform significantly better than the CNN-
based and GNN-based brain networks on almost all the metrics. For instance, on
SEN, the critical metric for diagnostic tests referring to true positive rate, our
TF-based method outperforms the best GNN-based network FBNETGEN [11]
and CNN-based network BrainNetCNN [14] by 15.51% and 16.41%, respectively.
(iii) Compared with FBNETGEN, which uses group losses to extract GNN fea-
tures, our main innovation is utilizing global rank-aware constraints to impose
intra-class and inter-class rank constraints into the brain-aware transformer, ef-
fectively exploring the natural geometric properties of brain data and making
a 14.52% SPE improvement. (iiii) Our method GBT achieves better perfor-
mance than the baseline BrainNetTF [12], demonstrating the effectiveness of the
AWMA-based transformer module and the proposed geometric-oriented repre-
sentation learning module. Concretely, GBT improves 4.54% on AUC, 7.50% on
ACC, 7.71% on SEN, and 7.62% on SPE.

3.6 Ablation Study

We conduct comprehensive ablation studies, where the experimental results are
listed in Table 2. Specifically, the first row (I) denotes the model [12], i.e., our
backbone network, with the cross-entropy loss. The second row (II) denotes our
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Table 2. Ablation studies of the proposed geometric-oriented representation learning
module (i.e., low-rank and high-rank constraints) and the AWMA-based transformer
module, where ✗ and ✓ in each row indicate the non-use and use of the corresponding
component, respectively. The best results are highlighted with bold.

Low-rank High-rank AWMA AUC ACC SEN SPE

(I) ✗ ✗ ✗ 80.20±01.00 71.00±01.20 72.50±05.20 69.30±06.50
(II) ✗ ✗ ✓ 81.19±02.33 76.20±00.98 77.79±11.29 72.40±09.17
(III) ✗ ✓ ✓ 79.79±02.63 71.60±03.20 76.91±10.48 66.82±14.89
(IV) ✓ ✗ ✓ 80.30±03.13 76.25±02.17 78.75±12.95 71.17±13.54

Our ✓ ✓ ✓ 84.74±04.57 78.50±06.50 80.21±09.38 76.92±03.85

backbone network with the AWMA-based transformer module and the cross-
entropy loss. The third row (III) denotes a variant of our network that conducts
supervised learning with the second-term high-rank loss and the cross-entropy
loss, i.e., minZl

(− |Zl|∗)+Fce (Y,FΘ (Zl)). The fourth row (IV) denotes a vari-
ant of our network that utilizes the first-term low-rank loss and the cross-entropy
loss to supervise the training process, i.e., minZl

∑c
i=1 |Zi|∗ +Fce (Y,FΘ (Zl)) .

The fifth row (Our) is our full method. From Table 2, we have the following ob-
servations: (i) The comparisons between (I) and (II) illustrate the effectiveness
of the proposed AWMA-based transformer module among all metrics. For ex-
ample, it achieves a 5.29% improvement on the SEN metric. (ii) By comparing
the results in (II) and (III), we can observe that the utilization of the high-
rank constraint has performance degradation. The possible reason is that the
samples lack intra-class compactness, resulting in reduced discriminative power
between different nodes. (iii) The comparisons of Our method with (III) and
(IV) demonstrate that simultaneously considering the low-rank intra-class com-
pactness and high-rank inter-class diversity could promote learning a discrim-
inative representation, improving the classification performance. For example,
Our method obtains 10.10 % performance improvement over III on SPE.

4 Conclusion

This paper proposes a novel transformer-based brain network, GBT, to learn
discriminative graph representations across brain ROIs. Specifically, GBT com-
bines an AWMA-based transformer module to conduct the matrix approximation
toward the attention weight matrix of the transformer encoder and a geometric-
oriented representation learning module to consider the intra-class compact-
ness and inter-class diversity, aiming to understand brain fMRI connectome for
Autism diagnosis. Experimental results on ABIDE demonstrate its superiority
over SOTA methods, validating the effectiveness of the proposed AWMA-based
transformer module and geometric-oriented representation learning module. In
the future, we will exploit the Neurosynth platform to conduct neuroimaging
meta-analysis to promote biomarker discovery.
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