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Abstract. Medical images captured in less-than-optimal conditions may
suffer from quality degradation, such as blur, artifacts, and low light-
ing, which potentially leads to misdiagnosis. Unfortunately, state-of-the-
art medical image enhancement methods face challenges in both high-
resolution image quality enhancement and local distinct anatomical struc-
ture preservation. To address these issues, we propose a Clinical-oriented
High-resolution Lightweight Medical Image Enhancement Network, called
CHLNet, which proficiently addresses high-resolution medical image en-
hancement, detailed pathological characteristics, and lightweight net-
work design simultaneously. More specifically, CHLNet comprises two
main components: 1) High-resolution Assisted Quality Enhancement Net-
work for removing global low-quality factors in high-resolution images
thus enhancing overall image quality; 2) High-quality-semantic Guided
Quality Enhancement Network for capturing semantic knowledge from
high-quality images such that detailed structure preservation is enforced.
Moreover, thanks to its lightweight design, CHLNet can be easily de-
ployed on medical edge devices. Extensive experiments on three public
medical image datasets demonstrate the effectiveness and superiority of
CHLNet over the state-of-the-art.

Keywords: Medical Image Enhancement · High-resolution Image · Light
weight Network.

1 Introduction

Medical images play a vital role in the clinical analysis of various diseases [7].
Image quality is critical for accurate diagnosis and disease screening. However,
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diverse imaging devices and non-standard manual processes contribute to the
presence of numerous low-quality images in clinical datasets, potentially leading
to inaccurate clinical diagnoses. Therefore, it is imperative to develop reliable
methods for medical image enhancement.

Initially, traditional image enhancement methods, including LIME [9] and Fu
et al. [8] have been attempted to enhance medical images. Nevertheless, these
methods lack sensitivity to pathology details are not generalizable in clinical sce-
narios. More recently, medical image enhancement has made significant progress
with the advancement of deep learning techniques. For instance, Cheng et al. [2]
present a semi-supervised enhancement framework using pixel-wise importance
maps for guided learning. Additionally, a coarse-to-fine enhancement framework
[16] based on a diffusion model is proposed and achieves state-of-the-art perfor-
mance. However, these methods suffer from downsizing images to a fixed low
resolution, primarily due to hardware constraints, which hinder enhancement
networks from capturing global low-quality factors in high-resolution images.
Although some methods [5,11] have employed local image patches for enhanc-
ing and restoring the original image, aiming to preserve more image details.
They potentially lead to discontinuities and distortions at patch boundaries,
thus impacting the recognition of anatomical landmarks and disease-related le-
sions. Alternatively, other methods [19,5] use GANs to learn suitable mappings
from a low-quality domain to a high-quality domain, but they tend to gener-
ate undesirable distorted images with pseudo-pathological structures, which is
unacceptable for clinical medical images. Taking these into consideration, two
questions naturally arise: 1) how to break the traditional paradigm of enhancing
low-resolution images and pioneer high-resolution image enhancement to im-
prove global image quality, and 2) how to model rich semantic information to
restore local pathological details in reconstructed images?

To circumvent the above issues, we propose a novel Clinical-oriented High-
resolution Lightweight Medical Image Enhancement Network, termed CHLNet,
consisting of a High-resolution Assisted Quality Enhancement Network (HAQE)
and a High-quality-semantic Guidance Quality Enhancement Network (HGQE).
Specifically, HAQE adopts low-quality, low-resolution images as input and lever-
ages Parallel Dilated Convolutional Attention Blocks (PAB) to construct a high-
quality field instead of directly enhancing the image. The high-quality field is
then combined with the input to generate a low-resolution enhanced image, and
it can also be super-resolved to match low-quality, high-resolution images, lead-
ing to dual outputs that enhance both low and high-resolution spaces, ultimately
improving global image quality. Furthermore, HGQE utilizes knowledge distilla-
tion [10] to guide the intermediate semantic feature distributions of HAQE. This
ensures the capture of high-quality semantic knowledge to preserve local anatom-
ical landmarks and disease-related lesion information. Additionally, thanks to the
lightweight design, CHLNet can be easily deployed on medical edge devices.

To the best of our knowledge, this is the first work to design an enhance-
ment network tailored for high-resolution medical images. In summary, the main
contributions of this work are three-fold: 1) We propose a novel clinical-oriented
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Fig. 1. Overview of CHLNet. Stage 1: Train the High-quality-semantic Guided Qual-
ity Enhancement Network f(·, θ2) constrained by the reconstruction loss LR. Stage 2:
Train the High-resolution Assisted Quality Enhancement Network f(·, θ1) constrained
by the low-resolution and high-resolution enhancement loss LL

E and LH
E to remove

low-quality factors from the global high-resolution image. Additionally, the semantic
guidance knowledge distillation loss LL

E enforces semantic consistency between f(·, θ1)
and f(·, θ2), thereby ensuring detailed pathological and lesion information.

high-resolution lightweight framework with PAB blocks capable of processing
high-resolution inputs, capturing global pathological structures, and removing
various low-quality factors. 2) We design two enhancement networks from global
and local perspectives, namely HAQE and HGQE. The former aims to capture
sufficient high-resolution global structural information, while the latter facili-
tates the former’s learning by efficiently transferring local high-quality seman-
tic knowledge. 3) Extensive quantitatively and qualitatively comparison exper-
iments are conducted on three medical image datasets. The results prove that
CHLNet significantly outperforms the previous best methods.

2 Methodology

An overview of our proposed framework, CHLNet, is shown in Fig. 1. We first
elaborate on the overall enhancement process (Sect. 2.1) and then concentrate
on the details of HAQE (Sect. 2.2) and HGQE (Sect. 2.3), respectively.

2.1 Overall Enhancement Process

Given a training dataset D = {(Xi, Yi)
N
i=1}, where Xi denotes the ith high-

resolution, low-quality image, Yi corresponding to its high-quality image, and
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N is the number of samples, respectively. We first down-sample the dataset to
X ′

i ∈ RH×W×C and Y ′
i ∈ RH×W×C with scaling factor c. The overall framework

consists of two stages. In the first stage, we exclusively utilize the high-quality
image Y ′

i as the input of the HGQE network f(·, θ2) to generate the reconstructed
image Y ′

Ri
and train the network self-supervised. Thus, it can be formulated as

minθ2
1
N

∑N
i=1 LR(f(Xi, θ2), Yi), where LR = E[||f(Xi, θ2), Yi||1] presents the L1

reconstruction loss. In the second stage, the HAQE network f(·, θ1) processes
the input image X ′

i to generate the high-quality fields Fi, which is then combined
with the input to produce a low-resolution enhanced image X ′

Ei
. Additionally, Fi

can be super-resolved to match the size of low-quality, high-resolution image Xi

through pre-trained Super Resolution CNN [6], and combined to produce high-
quality, high-resolution enhanced image XEi

. Note that the Super Resolution
operation can preserve more image details compared to naive up-sampling. Thus,
the procedure can be expressed as:

Fi = f(X ′
i, θ1);X

′
Ei

= X ′
i + Fi;XEi

= Xi + SuperResolutionCNN(Fi). (1)

In this way, the dual enhancement results X ′
Ei

and XEi
in both low and high-

resolution spaces facilitate HAQE f(·, θ1) in capturing global structural infor-
mation, ultimately improving overall high-resolution image quality. Therefore,
the losses of LL

E and LH
E in both resolution spaces are defined as:

LL
E =

1

N

N∑
i=1

LEn(X
′
Ei
, Y ′

i );LH
E =

1

N

N∑
i=1

LEn(XEi
, Yi),

LEn(x, y) = L1(x, y) + LSSIM (x, y) + LHF (x, y)

= E[||x, y||1] + E[1− SSIM(x, y)] + E[||ψHF (x), ψHF (y)||1]
(2)

where LEn denotes the enhancement loss. It is composed of three parts: First,
the L1 loss is the basic pixel-level loss, preserving the consistency between the
enhanced and high-quality images. Second, the LSSIM loss reflects the human
visual perception of image quality, aiming to enforce consistency in brightness,
contrast, and structure between the enhanced and high-quality images. Finally,
the LHF loss extracts the high-frequency information (such as anatomical struc-
tures and lesion details) of medical images using a high-pass filter ψHF (·) and
suppresses blurry low-frequency information. Moreover, to better preserve lo-
cal pathological details, we ensure semantic consistency between pre-trained
HAQE f(·, θ1) and HGQE f(·, θ2) through feature map knowledge distillation
loss. Specifically, the encoder feature maps of HAQE and HGQE are denoted as
A = {A1, A2, .., AM} and G = {G1, G2, .., GM}, respectively, where M represents
the total number of feature map layers. Hence, the semantic guidance knowledge
distillation loss is defined as LS = 1

N×M

∑N
i=1

∑M
j=1 LKD(Aij , Gij), where LKD

represents the KL divergence loss.
Overall, the total loss function for the HAQE network can be represented as

LHAQE = LL
E + LH

E + LS . Notably, Although CHLNet includes two networks,
only the HAQE network is required in the testing stage.
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Fig. 2. The procedure of Parallel Dilated Convolutional Attention Block.

2.2 High-resolution Assisted Quality Enhancement Network

The low-quality factors in medical images comprise defocus, motion blur, etc.,
with uneven spatial distribution. To estimate the low-quality distribution for im-
age enhancement, the model requires capturing a sufficiently large image region
to obtain global illumination and structural information. To this end, we pro-
pose the High-quality-semantic Guided Quality Enhancement Network (HAQE)
to balance computational efficiency and global information capture. As shown
in Fig. 1, the HAQE network adopts a U-shaped architecture (encoder, bottle-
neck, and decoder) with well-designed Parallel Dilated Convolutional Attention
Blocks (PABs). To ensure the preservation of fine structures and texture de-
tails in the enhanced images, residual connections are established between each
decoder layer and its corresponding encoder layer. Additionally, the PixelShuf-
fle method for upsampling in the decoder also facilitates retaining detailed in-
formation and reduces computational complexity. Notably, HAQE utilizes an
asymmetric encoder-decoder architecture with fewer PABs in the decoder. This
prioritizes the encoder for enhancement tasks and applies semantic-guided meth-
ods more effectively.

Figure 2 illustrates the procedure of PAB, consisting of two sub-blocks:
PAB1 and PAB2. These sub-blocks include layer normalization, 1×1 convo-
lution, multi-scale dilated convolutions, spatial gating unit (SGU) [4], channel
attention, and residual connection. PAB1 utilizes dilation rates d1 = [1, 2, 4, 8]
to integrate receptive fields of different scales, while PAB2 uses non-overlapping
dilation rates d2 = [1, 3, 5, 7] to avoid grid artifacts. The dilated convolutions ex-
pand the receptive field without increasing model parameters, thus contributing
to the lightweight character of the FAQE network. Subsequently, SGU aggrega-
tion dynamically adjusts weights to fuse feature maps for emphasizing patholog-
ical details and lesion information while eliminating low-quality factors. More-
over, a channel attention mechanism [12] is incorporated between the two PAC
sub-blocks to automatically highlight important channels, thereby enhancing
essential feature extraction from medical images.
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2.3 High-quality-semantic Guided Quality Enhancement Network

Due to the difficulty of maintaining structural consistency with real medical
images and the sensitivity to noise, enhancement models often generate un-
desired distorted images with pseudo-pathological structures. To preserve real
anatomical landmarks and disease-related lesion information, we propose the
High-quality-semantic Guided Quality Enhancement Network (HGQE) which is
trained on high-quality images in a self-supervised manner (as described in Sec-
tion 2.1). Inspired by knowledge distillation [10], the pre-trained HGQE can act
as a teacher network, while HAQE serves as a student network. By aligning their
feature map distributions through KL divergence, the knowledge from HGQE is
transferred to HAQE, thus improving the preservation of intricate pathological
details. Additionally, HGQE shares a similar architecture with HAQE but omits
the residual connections between the encoder and decoder, which compels the
encoder to preserve more high-quality information for better semantic knowledge
transfer.

3 Experiments

3.1 Dataset and Implementation Details

We conduct experiments on the following three benchmark datasets: (1) the Real
Fundus (RF) dataset [5] consists of 120 low-quality and high-quality clinical fun-
dus image pairs; (2) the endoscopy dataset is derived from the publicly available
CVC-EndoSceneStill dataset [18] for endoluminal scene enhancement, consisting
of 624 high-quality images and 288 low-quality images; and (3) the skin lesion
dataset is curated from the ISIC Challenge Dataset 2017 [3] provided by the
International Skin Imaging Collaboration (ISIC), comprising 1635 high-quality
images and 1115 low-quality images. Due to paired high-quality and low-quality
images not existing in EndoSceneStill and ISIC datasets, the pipeline proposed
by [2] is adopted to synthesize paired images. Additionally, all datasets are split
into a 1:3 ratio of training and testing sets. For evaluation, we employ peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM)
as quantitative metrics to assess the performance of the enhancement methods.
Higher PSNR and SSIM values indicate that the enhanced images closely resem-
ble the reference images. More training details are in the supplementary
material.

3.2 Comparison with the State-of-the-Art Methods

To evaluate the effectiveness of CHLNet, comprehensive quantitative and qual-
itative comparisons with state-of-the-art medical image enhancement methods
are conducted. We compare CHLNet with traditional image enhancement meth-
ods, including LIME [9] and Fu et al. [8], as well as several deep learning meth-
ods: supervised methods (e.g., PCENet [15], ScrNet [13], DeepRFT [17]), un-
supervised methods (e.g., ArcNet [14], StillGAN [16]), semi-supervised method
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Fig. 3. Visual comparisons between comparable methods and CHLNet for image qual-
ity enhancement with corresponding heatmap and segmentation results.

I-SECRET [2], and diffusion model-based method LED [1]. From Table 1, it is ev-
ident that our method exhibits a significant advantage over both traditional and
deep learning-based approaches in terms of PSNR and SSIM. Notably, CHLNet
retains a relatively small number of parameters and FLOPs compared to other
methods, making it preferable for deployment in medical edge devices. In ad-
dition, we also provide visualizations for different methods in Figure 3, where
the enhancement images with corresponding heatmap and segmentation results
are exhibited. It can be observed that our model enhances low-quality images
by simultaneously considering both localized anatomical landmarks and overall
image quality, resulting in superior visual outcomes compared to other methods.
Thanks to CHLNet, the enhanced images exhibit clearer vessel/lesion struc-
tures, facilitating their identification by the segmentation model and leading to
improved segmentation results, thereby benefiting clinical diagnosis.
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Table 1. Quantitative comparisons with the State-of-the-art methods for enhancing
low-quality medical images on three datasets, highlighting the best and second-best
scores with bold and underlined, respectively.

Real Fundus CVC-EndoSceneStill ISIC
Methods Params(M) Flops(G)

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

LIME [9] - - 15.52 0.766 14.86 0.854 12.93 0.824
Fu et al. [8] - - 11.74 0.562 11.75 0.692 10.24 0.633

PCENet [15] 26.65 343.45 19.86 0.832 23.63 0.703 24.70 0.894
ArcNet [14] 54.42 72.81 22.85 0.824 22.05 0.802 19.23 0.851
SCRNet [13] 89.29 137.29 24.05 0.886 23.46 0.854 24.26 0.895
StillGAN [16] 78.64 268.35 24.97 0.845 27.34 0.914 24.89 0.885
DeepRFT [17] 12.65 363.19 28.35 0.902 31.64 0.947 26.44 0.934
I-SECRET [2] 11.76 228.76 28.18 0.896 33.26 0.934 29.04 0.898

LED [1] 113.62 993.58 28.88 0.918 32.68 0.923 27.58 0.821

CHLNet(Ours) 8.57 21.64 30.41 0.942 34.54 0.958 34.51 0.935

Table 2. Ablation study of the loss
terms on Real Rundus dataset.

LL
E

a LH
E

b LS
c PSNR SSIM

✓ 27.77 0.902
✓ ✓ 29.09 0.926
✓ ✓ 28.04 0.930
✓ ✓ ✓ 30.41 0.942

a Low-resolution enhancement loss
b High-resolution enhancement loss
c Semantic guidance loss

Table 3. Ablation study of the various high-
resolution image sizes on Real Fundus dataset.

HRa Image Sizes LRb Image Sizes PSNR SSIM

320×320 256×256 28.87 0.941
640×640 256×256 29.83 0.943

1280×1280 256×256 30.41 0.942
2560×2560 256×256 29.39 0.932

a High-resolution
b Low-resolution

3.3 Ablation Study

We perform ablation experiments to assess the effectiveness of each component,
the results of which are shown in Table 2. It is evident that both the proposed
HAQE (corresponding to LL

E and LH
E ) and HGQE (corresponding to LS) boost

the enhancement performance significantly. More specifically, the incorporation
of the high-resolution enhancement loss LH

E (the 2nd row) facilitates the capture
of global image structural information, resulting in a significant improvement
of 1.32 dB in PSNR and 2.4% in SSIM over the baseline. Subsequently, the
introduction of the semantic guidance loss LS (the 4th row) preserves patholog-
ical structures while enforcing structural consistency with high-quality images,
ultimately achieving the optimal PSNR/SSIM values of 30.41 dB/94.2%. Ad-
ditionally, table 3 illustrates the performance impact of high-resolution image
sizes, showcasing a gradual performance increase as the resolution ranges from
320×320 to 1280×1280. This indicates that capturing a broader range of global
structures benefits quality enhancement. However, further size increases lead
to information loss and performance decline, thus we compromise by choosing
1280×1280 as the high-resolution image size.
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4 Conclusion

In this paper, we propose a novel lightweight medical image enhancement net-
work for enhancing high-resolution images, termed CHLNet. Benefiting from the
guidance provided by high-quality and high-resolution images, the enhanced im-
ages are capable of ensuring global image quality, while preserving local anatomi-
cal landmarks and disease-related lesion information. Additionally, its lightweight
design and high performance make it adaptable to a variety of clinical scenarios.
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