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Abstract. Lesion segmentation in chest images is crucial for AI-assisted
diagnostic systems of pulmonary conditions. The multi-modal approach,
which combines image and text description, has achieved notable per-
formance in medical image segmentation. However, the existing meth-
ods mainly focus on improving the decoder using the text informa-
tion while the encoder remains unexplored. In this study, we introduce
a Multi-Modal Input UNet model, namely MMI-UNet, which utilizes
visual-textual matching (VTM) features for infected areas segmentation
in chest X-ray images. These VTM features, which contain visual fea-
tures that are relevant to the text description, are created by a combina-
tion of self-attention and cross-attention mechanisms in a novel Image-
Text Matching (ITM) module integrated into the encoder. Empirically,
extensive evaluations on the QaTa-Cov19 and MosMedData+ datasets
demonstrate MMI-UNet's state-of-the-art performance over both uni-
modal and previous multi-modal methods. Furthermore, our method also
outperforms the best uni-modal method even with 15% of the training
data. These �ndings highlight the interpretability of our vision-language
model, advancing the explainable diagnosis of pulmonary diseases and
reducing the labeling cost for segmentation tasks in the medical �eld.
The source code is made publicly available at https://github.com/

nguyenpbui/MMI-UNet.git.

Keywords: Chest X-ray · Chest CT · Cross-attention mechanism · Med-
ical image segmentation · Multi-modal learning

1 Introduction

Chest imaging modalities, such as X-ray and CT scans, play a pivotal role in
diagnosing and monitoring a diverse range of lung conditions, encompassing
infectious diseases and neoplastic disorders. The advent of deep learning has
spurred the utilization of deep neural networks for analyzing radiological im-
ages in support of various tasks related to assisted diagnosis, including disease
classi�cation, lesion detection, and segmentation. Among these tasks, lesion seg-
mentation is crucial, as it facilitates the accurate identi�cation and delineation
of pathological regions within the thorax. Existing medical image segmentation
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methods [2, 4, 23], built upon the UNet architecture [14], have achieved signi�-
cant results. However, these methods often require a large amount of annotated
data for training, which remains a signi�cant obstacle in the medical �eld due
to the high labeling cost and time associated with expert annotation.

Therefore, leveraging accompanying textual data from medical notes o�ers
a compelling opportunity. Unlike acquiring and annotating entirely new data
sources, text data from medical records is often readily available alongside the
corresponding images, eliminating the need for extra costs associated with data
collection, which can be a major bottleneck in medical research and development.
Furthermore, the inherent complementary nature of the medical text and image
data allows the textual information to enrich and potentially compensate for
limitations in the visual data, leading to improved performance for image analysis
tasks such as segmentation, classi�cation, and disease diagnosis.

Following the groundbreaking work of CLIP [13] in 2021, which utilized 4
million image-text pairs for contrastive learning, the �eld of multi-modal learn-
ing has drawn extensive attention. This approach extends beyond computer vi-
sion and into the medical �eld, where researchers are applying vision-language
pre-training and processing to downstream tasks such as classi�cation and seg-
mentation. For instance, Tomar et al. [15] proposed a Text-Guided Attention
method that enables the model to learn additional, case-speci�c feature rep-
resentations for polyp segmentation. Similarly, Li et al. [10] introduced LViT,
a hybrid CNN-Transformer architecture that fuses image and text features to
segment infected regions in chest X-ray images. Recently, GuideDecoder [22]
achieved state-of-the-art (SOTA) performance on the QaTa-COV19 dataset [5]
by implementing a novel approach that focuses on improving the decoder using
both image and text features.

This work presents Multi-Modal Input UNet or MMI-UNet, a novel multi-
modal learning approach for lesion segmentation in chest images. MMI-UNet
integrates visual and linguistic features through a newly developed Image-Text
Matching (ITM) module. This module leverages self-attention and cross-attention
mechanisms to generate visual-textual matching (VTM) features, capturing vi-
sual elements relevant to the accompanying text descriptions. Experimental re-
sults on the QaTa-COV19 and MosMedData+ datasets demonstrate that MMI-
UNet surpasses SOTA uni-modal and multi-modal methods. Notably, MMI-
UNet also outperforms the best uni-modal method even with limited training
data, highlighting its potential to reduce the need for extensive and expensive
data labeling in medical image segmentation.

2 Method

As illustrated in Fig. 1, the proposed method leverages a UNet architecture [14]
with a multi-modal encoder and a segmentation decoder. The encoder progres-
sively extracts features from both the image and the accompanying text descrip-
tion and then combines them via a novel Image-Text Matching (ITM) module
from levels 1 to 4. The visual-textual matching features from the ITM module are
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Fig. 1: The overview of the proposed Multi-Modal Input UNet (a) with Image-
Text Matching module (b) and decoder block (c).

then passed through the decoder block at each level to produce the segmentation
output. We elaborate on these components in the following sections.

2.1 Multi-modal encoder

Given an input image in the size of H ×W × 3, we employ the tiny version of
ConvNeXt [11] as the image encoder to extract multiple visual features from the
last four levels, which are denoted as F4, F3, F2, F1 in the size of H

4 × W
4 × 96,

H
8 ×W

8 ×192, H
16×

W
16 ×384, and H

32×
W
32 ×768, respectively. For the corresponding

text description, we adopt the pre-trained CXR-BERT [1] as the text encoder
to extract the textual features, denoted as T . These textual features have a
dimension of L × C, where C represents the dimensionality of the extracted
features and L signi�es the length (number of tokens) of the text description.
We set the value of C to 768 and freeze the text encoder during training.

Image-Text Matching (ITM) module: Leveraging both the image and
its accompanying text description, the encoder aims to extract features that are
optimally suited for segmentation tasks. This is accomplished by jointly inter-
preting the visual and textual information through the Image-Text Matching
(ITM) module, as shown in Fig. 1 (b). To ensure computational e�ciency, we
�rst reduce the dimensionality of both the visual and textual features. This is
achieved via a 2 × 2 convolutional layer (Conv) with the stride of 2 for the
visual features and a linear layer (Linear1) for the textual features. The process
is described as follows:

F c
i = LayerNorm(Conv(Fi))

Ti = LayerNorm(Linear1(T
ITM
i−1 + T ))



4 P.-N. Bui et al.

Inspired by [16], we incorporate both multi-head self-attention (MHSA) for
each modality and multi-head cross-attention (MHCA) within the ITM module.
MHSA allows each modality, i.e. image and text, to attend to its features,
capturing internal relationships and dependencies. MHCA, on the other hand,
enables the interaction between features from di�erent modalities. In theMHCA
operation, for each feature from either modality, we treat it as the query (Q)
while the keys (K) and values (V ) used for attention are obtained from the other
modality. The process is described as:

F sa
i = LayerNorm(MHSA(F c

i ) + F c
i )

T sa
i = LayerNorm(MHSA(Ti) + Ti)

F ca
i = LayerNorm(MHCA(F sa

i , T sa
i ) + F sa

i )

T ca
i = LayerNorm(MHCA(T sa

i , F sa
i ) + T sa

i )

Afterward, the visual-textual matching features from each modality are then
passed through a feed-forward network (FFN), followed by a layer normaliza-
tion (LayerNorm). We use a transposed convolution (ConvT ) and linear layer
(Linear2) to upsample the size of visual and textual features to match the size
of the original features, respectively, described as follows:

F ITM
i = ConvT (LayerNorm(FFN(F ca

i ) + F ca
i ))

T ITM
i = Linear2(LayerNorm(FFN(T ca

i ) + T ca
i ))

2.2 Segmentation decoder

Within each decoder level, the visual output from the ITM module and the pre-
ceding decoder feature are combined. The former is fed into an e�cient channel
attention (ECA) module [18] while the latter is upsampled via a transposed con-
volution layer. These features are then channel-wise concatenated before being
processed by a 3×3 convolutional layer. This is followed by batch normalization
and a ReLU activation function, as shown in Fig. 1 (c). Finally, in the segmen-
tation head, the preceding decoder feature is upsampled to match the original
input image resolution. A 1×1 convolution and a sigmoid activation function are
then applied to generate the segmentation output.

3 Experiments and Results

3.1 Datasets, evaluation metrics and implementation

Datasets: To evaluate the performance of our proposed MMI-UNet model,
we conduct experiments on two publicly available datasets: QaTa-COV19 and
MosMedData+. The �rst dataset, compiled by a collaborative e�ort between re-
searchers from Qatar University and Tampere University, comprises 9258 chest
X-ray images featuring COVID-19 cases. The second dataset, MosMedData+,
consists of 2729 CT scan slices speci�cally capturing lung infections. Notably,
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both datasets share similar text annotations, focusing on key clinical aspects like
the presence of infection in both lungs, the number of lesions, and their approx-
imate locations. These annotations are shown in Fig. 1(a) for further reference.

Evaluation metrics:We employ the Dice coe�cient and Jaccard coe�cient
to quantitatively evaluate the segmentation performance. Both metrics assess the
overlap between the predicted segmentation mask and the ground truth mask
by calculating the ratio of the intersection area to the union area. Notably, the
Dice coe�cient is sensitive to the accurate segmentation of small objects.

DSC =
2
∣∣GT ∩ PR

∣∣∣∣GT
∣∣+ ∣∣PR

∣∣ = 2× TP

2× TP + FP + FN

IoU =

∣∣GT ∩ PR
∣∣∣∣GT ∪ PR
∣∣ = TP

TP + FP + FN

Implementation: Following [10], we split the QaTa-COV19 dataset into
training, validation, and testing sets with 5716, 1429, and 2113 samples, respec-
tively. the MosMedData+ dataset is divided into a training set with 2183 images,
a validation set with 273 images and a testing set with 273 samples. All images
are cropped to the size of 224 × 224. Data augmentation is employed using a
random zoom technique with a probability of 10%. PyTorch [7], PyTorch Light-
ning, MONAI [3], and Transformers [19] are utilized for implementation. The
entire training and testing procedure is conducted on a single NVIDIA A100
80 GB VRAM GPU. To train the model, we employ a combined loss function
consisting of Dice loss and cross-entropy loss, and the network is optimized using
the AdamW optimizer with a batch size of 32. A cosine annealing learning rate
schedule is employed, starting at 3e-4 and decreasing to 1e-6.

3.2 Performance comparison with existing methods

We compare MMI-UNet against commonly used mono-modal and the latest
multi-modal medical image segmentation methods. For a fair comparison, we em-
ploy publicly available source codes or re-implement based on the corresponding
papers and then apply the same hyperparameters and preprocessing techniques.
As presented in Table 1, MMI-UNet surpasses all evaluated methods on both the
QaTa-COV19 and MosMedData+ datasets. Speci�cally, compared to nnUNet,
our method achieves signi�cant improvements of 10.46% and 5.83% DSC, re-
spectively, across both datasets. In comparison with other multi-modal methods
such as LViT [10] and GuideDecoder [22], the proposed method demonstrates
superior performance, with improvements of 7.22% and 1.1% DSC on the QaTa-
COV19 dataset and 3.85% and 0.67% DSC on the MosMedData+ dataset.

We qualitatively demonstrate the results of the proposed MMI-UNet and
other methods on the QaTa-COV19 and MosMedData+ in �gures 2 and 3, re-
spectively. MMI-UNet exhibits a signi�cant reduction in mis-segmentation com-
pared to other SOTA methods. This improvement is attributed to the e�ective
integration of textual information with image data in the encoder via the ITM
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Table 1: Quantitative comparison on segmentation results with uni-modal and
previous multi-modal learning methods. The best and second best results are
highlighted in bold and underline, respectively.

Method Type Param ↓ FLOPs ↓ QaTa-COV19 MosMedData+

(M) (G) DSC ↑ IoU ↑ DSC ↑ IoU ↑

UNet [14] CNN 14.8 50.3 79.02 69.46 64.60 50.73
UNet++ [23] CNN 74.5 94.6 79.62 70.25 71.75 58.39
AttUNet [12] CNN 34.9 101.9 79.31 70.04 66.34 52.82
nnUNet [12] CNN 19.1 412.7 80.42 70.81 72.59 60.36
TransUNet [4] Hybrid 105 56.7 78.63 69.13 71.24 58.44
UCTransNet [17] Hybrid 65.6 63.2 79.15 69.60 65.90 52.69
Swin-UNet [2] Hybrid 82.3 67.3 78.07 68.34 63.29 50.19

CLIP [13] Hybrid 87.0 105.3 79.81 70.66 71.97 59.64
GLoRIA [6] Hybrid 45.6 60.8 79.94 70.68 72.42 60.18
ConVIRT [21] CNN 35.2 44.6 79.72 70.58 72.06 59.73
TGANet [15] CNN 19.8 41.9 79.87 70.75 71.81 59.28
ViLT [9] Hybrid 87.4 55.9 79.63 70.12 72.36 60.15
LAVT [20] Hybrid 118.6 83.8 79.28 69.89 73.29 60.41
LViT [10] Hybrid 29.7 54.1 83.66 75.11 74.57 61.33
GuideDecoder [22] Hybrid 44.0 22.4 89.78 81.45 77.75 63.60
MMI-UNet Hybrid 56.2 22.1 90.88 83.28 78.42 64.50

Input UNet++ TransUNet GLoRIA TGANet LViT GuideDecoder Ours

Fig. 2: Segmentation visualization on the QaTa-COV19 dataset. Yellow, red, and
green indicate true positive, false negative, and false positive, respectively.
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module, enabling our model to accurately segment infected areas while �ltering
out irrelevant regions, as shown in the last two rows of Fig. 2. In particular, the
segmentation output of MMI-UNet in the third row precisely aligns with the text
description: "Unilateral pulmonary infection, one infected area, middle
lower left lung." while other methods over-segment the right side of the image,
misidentifying it as the infected area mentioned in the text description.

Input UNet++ TransUNet GLoRIA TGANet LViT GuideDecoder Ours

Fig. 3: Segmentation visualization on the MosMedData+ dataset. Yellow, red,
and green indicate true positive, false negative, and false positive, respectively.

3.3 Ablation study

We further explore the impact of incorporating the existing GuideDecoder [22]
into MMI-UNet, resulting in a variant termed MMI-UNet with GD, as detailed in
Table 2. We strictly follow the implementations of GuideDecoder by replacing the
encoder features with enhanced visual ones from the Image-Text Matching (ITM)
module. However, despite this signi�cant rise in model complexity, an increase
of 9.6M parameters, the MMI-UNet with GD does not surpass the performance
of the original MMI-UNet with the conventional CNN decoder. This �nding
suggests that the original MMI-UNet e�ectively balances performance and model
e�ciency, achieving SOTA results without requiring additional complexity.

We also perform extensive experiments to analyze the impact of varying
training data sizes on the model's segmentation performance. As illustrated in
Table 3, the proposed MMI-UNet achieves comparable performance with nnUNet
even with limited training data. In particular, MMI-UNet achieves 8.31% and
1.41% higher DSC compared to nnUNet, the best mono-modal model trained on
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Table 2: Impact of di�erent decoder architectures on segmentation performance.

Method Param ↓ Covid-19 MosMedData+

(M) DSC ↑ IoU ↑ DSC ↑ IoU ↑

MMI-UNet w/ GD 65.8 90.36 82.46 78.38 64.45
MMI-UNet 56.2 90.88 83.28 78.42 64.50

the entire dataset when using only a quarter of the data. This �nding emphasizes
the advantages of multi-modal approaches, where the e�ective integration of text
prompts signi�cantly improves segmentation performance with limited data.

Table 3: Impact of the training data size on segmentation performance.

Method
Covid-19 MosMedData+

DSC ↑ IoU ↑ DSC ↑ IoU ↑

nnUNet [8] (100% training data) 80.42 70.81 72.59 60.36

MMI-UNet (15% training data) 88.72 79.73 74.00 58.73
MMI-UNet (25% training data) 89.37 80.79 75.40 60.51
MMI-UNet (50% training data) 90.04 81.89 76.27 61.64
MMI-UNet (100% training data) 90.88 83.28 78.42 64.50

4 Conclusion

This paper presents MMI-UNet, a novel multi-modal learning method for in-
fected area segmentation in chest images. By integrating visual features from
the image and textual information from its accompanying description through a
newly designed Image-Text Matching (ITM) module, MMI-UNet leverages the
power of both modalities. This innovative module employs self-attention and
cross-attention mechanisms to generate visual-textual matching (VTM) features,
capturing visual elements directly related to the speci�cs mentioned in the text
descriptions. Extensive evaluations on the QaTa-COV19 and MosMedData+
datasets demonstrate that MMI-UNet achieves superior performance compared
to both best-performing uni-modal and multi-modal methods. Notably, MMI-
UNet even surpasses the best uni-modal method even with limited training data,
signifying its potential to signi�cantly reduce the need for extensive and expen-
sive data labeling, a critical challenge in medical image segmentation. These
�ndings not only showcase the e�ectiveness of MMI-UNet but also hint at its
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potential interpretability, which is essential for the development of a trustworthy
and explainable diagnostic system for pulmonary diseases.
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