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Abstract. Catheter ablation is a prevalent procedure for treating atrial
fibrillation, primarily utilizing catheters equipped with electrodes to gather
electrophysiological signals. However, the localization of catheters in flu-
oroscopy images presents a challenge for clinicians due to the complexity
of the intervention processes. In this paper, we propose SIX-Net, a novel
algorithm intending to localize landmarks of electrodes in fluoroscopy
images precisely, by mixing up spatial-context information from three
aspects: First, we propose a new network architecture specially designed
for global-local spatial feature aggregation; Then, we mix up spatial cor-
relations between segmentation and landmark detection, by sequential
connections between the two tasks with the help of the Segment Any-
thing Model; Finally, a weighted loss function is carefully designed con-
sidering the relative spatial-arrangement information among electrodes
in the same image. Experiment results on the test set and two clinical-
challenging subsets reveal that our method outperforms several state-of-
the-art landmark detection methods (∼ 50% improvement for RF and
∼ 25% improvement for CS).

Keywords: Catheter electrode detection · Fluoroscopy analysis

1 Introduction

Atrial Fibrillation (AFib), atrial flutter, and premature ventricular contractions
(PVC) are prevalent manifestations of cardiac arrhythmias. Frequent cardiac
arrhythmias may give rise to serious consequences, for instance, AFib can lead
to blood clots in the heart [19]. Compared with pharmaceutical interventions,
catheter-based radiofrequency ablation techniques in cardiac electrophysiology
(EP) stand as the standard surgical intervention for the definitive treatment
of rapid cardiac arrhythmias, characterized by immediate therapeutic effects
and high success rates [11,14]. The electrode constitutes a pivotal component
of catheters utilized for both EP signal acquisition and catheter localization.
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However, the variability in X-ray imaging quality and the overlap among multiple
catheters during clinical surgical procedures render real-time precise electrode
localization in fluoroscopy challenging for physicians. To alleviate burdens for
clinicians in the surgery and help novice doctors get familiar with this surgery,
it is important to develop accurate catheter placement detection methods.

CathSeg [24], FWNet [13] and several works [10,3,2,20,6,17] regard this task
as a segmentation problem and require manually annotated masks for supervised
training; ConTrack [5] integrates information between video frames and adopts
tracking methods. Unlike these methods, in this paper, we model the task as a
single-image electrode landmark detection (SIELD) problem, where only
the input image and ground truth landmark locations are available.

Compared to other SIELD tasks, which focus on landmarks of the discrete
structure, such as joints of hands [28] or heads [16,4], the landmarks of the
electrodes in intracardiac catheter interventions have a stronger spatial config-
uration, that is, the electrodes are manufactured to be evenly distributed along
the catheter body. How to utilize this spatial-context information prior ef-
fectively, is the key point for improving the detection precision.

Therefore, in this paper, we propose SIX-Net to solve this task by leverag-
ing spatial-context information exhaustively and mixing it up in a deep network
for precise SIELD, mainly from three perspectives: (I) between global and
local features: the global and local features are extracted and aggregated using
a U-shape network and a dilated convolution network; (II) between segmen-
tation masks and landmarks: we generate pseudo segmentation masks using
SAM with ground truth landmarks and leverage the spatial-context information
from pseudo masks for landmark detection. The generation of segmentation is
low-cost and efficient; (III) among different landmarks: by analyzing the
spatial distribution of hard-to-detect landmarks in the same image, we witness a
significant distribution trend and accordingly modify the weights of the loss func-
tion to improve the overall detection precision. This paper offers the following
contributions:

1. We propose a landmark detection network, which extracts and integrates the
spatial-context features in fluoroscopic images for precise electrode localiza-
tion;

2. We introduce a weight loss function based on the spatial distribution of hard
cases to better tackle clinically challenging situations;

3. Extensive experiments on three datasets illustrate that our proposed method
outperforms the state-of-the-art landmark detection methods on two com-
monly used catheters.

2 Related Works

Catheter Segmentation. FWNet [13] introduces a framework, which com-
bines a segmentor, an optical flow network, and a flow-guided warping function
to learn temporal continuity for catheter segmentation in a fluoroscopy sequence.
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Fig. 1. Overview of SIX-NET. (a) The overall architecture; (b) Architecture of G; (c):
Architecture of E and D.

Ambrosini et al. [1] emphasize segmentation and center-line construction using
both current and preceding images. [24] uses a patch-wise semantic segmen-
tation with model fitting for catheter segmentation in 3D cardiac ultrasound.
However, segmenting catheters requires significant effort, and when it comes
to subsequent development, the centerline and electrode positions are generally
more concerned.
Catheter Tracking. In [21], a tracker is implemented to localize the tip in the
last frame as a reference for segmenting the tip in successive frames. U-LanD [7]
capitalizes on the uncertainty inherent in landmark prediction to achieve auto-
matic detection of landmarks in key frames of videos. The ConTrack [5] incorpo-
rates multiple template images for robustness against appearance changes and
employs optical flow computation between frames for refinement.
Landmark Detection. In [25], a multi-task U-Net is implemented to predict
both heatmap and offset maps of landmarks simultaneously. In [12], an effi-
cient contour-hugging landmark detection method with uncertainty estimation
is depicted. In [28], a universal anatomical landmark detection model has been
developed. And OFELIA [23] integrates spatial and temporal features between
adjacent frames for electrode localization, aided by optical flow maps.

3 Method

3.1 Problem Definition

Giving a fluoroscopic image Xi ∈ Rw×h with the shape of (w, h) and corre-
sponding electrode landmarks Mi ∈ RNe×w×h, which denotes the position of Ne

electrode landmarks, we obtain the kth (k ∈ [1, 2, . . . , Ne]) landmark’s heatmap
Yik by using Gaussian function:

Yik(x, y) =
1√
2πσ

exp(− (x− xik)
2 + (y − yik)

2

2σ2
). (1)

Electrode landmark detection aims to train a network f(·), which takes the Xi

as input, and predicts the locations of electrode landmarks in it, i.e., {Ŷik}Ne

k=1.
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3.2 Global ↔ Local Mix-up

The global information and local information are extracted by a U-shape net
and a dilated convolution net [22]. Specifically, we use E and D to represent the
encoder and decoder of the U-Net to extract the local information.

Inspired by [15,9,27], E consists of four separable convolution blocks, termed
S-Conv, which is mainly composed of depth-wise convolution and point-wise
convolution layers. Each S-Conv is followed by a max-pooling layer to reduce
the shape of the feature map. Similarly, D is composed of four up-sampling +
S-Conv blocks, trying to predict the pseudo mask or target landmark heatmap.
We use the S-Conv because it’s lightweight. Skip connections are added between
S-Convs of E and E within the same feature levels. The detailed architectures
of E and D are shown in Fig. 1.

The global feature is extracted by dilated convolution net G. As shown in
Fig. 1, G is a 5-layer convolution net with a dilated ratio of 1, 2, 5, 2, and 1,
respectively. The local and global features are aggregated by pixel-wise multi-
plication before being sent to the next module. For simplification, we use ϕ to
represent the whole global-local network. ϕS and ϕL denote the networks used
for segmentation and SIELD, which are of the same architecture.

3.3 Segmentation ↔ Detection Mix-up

Witnessing the fact that the electrode landmarks are concentrated along the
catheter, we try to aggregate the segmentation of the catheter to the SIELD
task. However, it is hard to access the ground truth segmentation mask due
to the heavy annotation workload. Thanks to the development of Segmenta-
tion Anything Models [8] (SAM), zero-shot image segmentation with minimum
prompt information such as points or bounding boxes would be possible.

In the training stage, we first generate a pseudo segmentation mask Si using
SAM by using the original image Xi and the ground truth landmarks Yik. i.e.
Si = SAM(Xi, Yik). The pseudo mask need not be very precise as we only require
an approximate estimation of the catheter’s shape. Then, we train a segmentor
ϕS using the aforementioned architecture to predict Ŝi. After that, the estimated
Ŝi is concatenated to the input Xi, and passed to ϕL to predict the final heatmap.

By introducing extra shape features to the landmark localization network,
ϕL can aggregate the spatial-context information between the catheter and elec-
trodes and improve the overall performance.

3.4 Inter-Electrode Mix-up

In the previous studies, the landmarks are treated equally, i.e. the overall cross-
entropy loss of each landmark is computed and averaged with the same impor-
tance, as shown below:

LD =

Ne∑
k=1

1

Ne
· LCE(Yk, Ŷk). (2)
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Fig. 2. MRE for each landmark of a sample image. The nearer electrode landmarks
have higher prediction errors. •••: ground truth landmarks with different MRE; ⋆:
central point of landmarks. Left: RF Catheter; Right: CS Catheter.

However, the hardness of accurate landmark detection varies significantly
among the Ne electrodes. Let Ycc ← (xcc, ycc) represent the central coordinate
of the Ne electrode landmarks. For current landmark Yk → (xk, yk), the closer
Yk to Ycc, the larger prediction error it has, as shown in Fig. 2.

Considering this special spatial-context information, we use different weight
factors for each landmark, making ϕL pay more attention to the hard landmarks.
Specifically, we compute the Euclidean distance between Yk and Ycc as Equ. 3:

Dk↔cc =
√

(xk − xcc)2 + (yk − ycc)2. (3)

Then, the weighting factor ωk is computed using Equ. 4, and the overall loss
function LD is defined as the weighted sum.

L∗
D =

Ne∑
k=1

ωk · LCE(Yk, Ŷk), ωk =

√∑Ne

i=1(Di↔cc)2 −Dk↔cc√∑Ne

i=1(Di↔cc)2
. (4)

Note that in our task, each image Xi consists of two types of catheters:
radio-frequency (RF) and coronary sinus (CS). Thus, each landmark Yk is first
categorized into one class based on the relative relation between Dk↔cc[RF ] and
Dk↔cc[CS], where Ycc[RF ] and Ycc[CS] are the central point of RF catheter and
CS catheter. Then, the LD of both catheters are computed and added together.

Compared to the original loss function LD, this new spatial-context information-
aware loss function L∗

D can provide better differentiation of the boundaries and
spatial-context information among electrodes and serve as a strong prior knowl-
edge for landmark detection. Finally, the overall loss function considering the
segmentation accuracy and detection precision are formulated as Equ. 5:

L = LS + L∗
D = LCE(Ŝi, Si) +

K∑
k=0

wikLk. (5)
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Fig. 3. Qualitative results on the three test sets. The numbers show the MRE of RF
and CS catheters. The ground truth and predicted landmark of CS Catheter are in blue
and yellow. The ground truth and predicted landmark of RF Catheter are in green and
red.

4 Experiments and Results

Experiment Settings about datasets, metrics, and implementation details.
Datasets. This study uses a private multi-center dataset of fluoroscopic sequences
obtained from cardiac ablation procedures and animal experiments. The dataset
includes two commonly used catheters: CS and RF catheters. Electrode land-
marks within this study are identified based on the electrode’s center point,
except for the RF catheter’s initial landmark, which is defined as its tip, result-
ing in a total of 14 landmarks per frame (4 for RF and 10 for CS). Annotation of
the dataset was conducted by two experienced engineers employing the LabelMe
tool [18] and reviewed by three clinical experts. The training and test sets consist
of 14,768 and 7,711 frames, respectively. To evaluate the robustness and adapt-
ability of the proposed methodology, we extract two clinical-challenging (CCA)
subsets, which consist of frames of specific procedural scenes, the injection of
contrast agent(575 frames, termed as DSA-Test) and frames where catheters are
partially obscured (2,266 frames, denoted as OBS-Test), both of which present
augmented complexity for the detection of catheter electrodes.
Metrics We use mean radial error (MRE) to measure the Euclidean distance
between prediction and ground truth. Additionally, the Successful Detection
Rate (SDR) is determined at four distinct thresholds: 0.5 mm, 1 mm, 2 mm,
and 4 mm, to assess the detection precision within these specified radii.
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Table 1. Results on the three test sets. Best and Second Best are highlighted.

Model
RF Catheter CS Catheter

MRE ↓ SDR (% ↑) MRE ↓ SDR (% ↑)
(mm) 0.5mm 1mm 2mm 4mm (mm) 0.5mm 1mm 2mm 4mm

Test Dataset

Yao et al. [26] 3.6232 14.19 42.18 48.54 70.03 4.7875 17.12 39.22 65.55 84.91
McCouat et al. [12] 0.9955 35.51 90.68 96.02 96.41 0.9237 37.17 92.13 96.59 97.25
Zhu et al. [28] 1.2992 78.46 93.78 96.17 96.81 0.9045 86.80 92.04 93.00 94.51
OFELIA [23] 0.9175 76.24 94.29 97.71 98.18 0.6628 73.43 96.89 98.60 99.30
SIX-Net(Ours) 0.4441 83.86 98.23 99.31 99.57 0.4327 84.99 98.96 99.56 99.80

Test-DSA Dataset

Yao et al. [26] 5.7585 18.69 38.16 76.55 79.52 3.5116 27.60 65.51 67.97 75.47
McCouat et al. [12] 1.7882 40.35 83.65 91.48 94.96 0.6143 44.35 93.04 98.96 99.83
Zhu et al. [28] 4.6221 43.48 83.83 91.83 94.26 0.5424 85.74 94.09 96.17 97.22
OFELIA [23] 1.6765 60.52 89.57 92.52 95.48 0.6127 64.33 94.26 99.65 100.00
SIX-Net(Ours) 0.5713 68.00 94.78 97.04 98.96 0.4056 83.13 97.91 99.83 100.00

Test-OBS Dataset

Yao et al. [26] 4.5076 35.17 47.33 58.53 83.08 3.0357 25.99 39.98 43.14 80.01
McCouat et al. [12] 1.0378 43.93 93.60 96.95 97.57 0.8304 42.56 93.42 97.35 98.41
Zhu et al. [28] 1.1779 81.94 95.41 96.95 97.88 0.9970 84.15 88.92 89.89 93.02
OFELIA [23] 0.9586 76.36 93.91 97.00 98.01 0.6493 64.59 95.32 97.62 99.16
SIX-Net(Ours) 0.4739 83.49 97.44 98.32 99.16 0.4854 86.58 97.35 99.26 99.66

Implementation details. Our model is implemented in PyTorch and trained on
an NVIDIA A100 GPU. The image pairs are augmented by random rotation,
intensity scaling, and elastically transformation, and resized to 640× 640 before
being sent to the network. The network training is conducted utilizing the Adam
optimizer, commencing with a learning rate of 0.001 and employing a batch size
of 4 for 40 epochs. Learning rate adjustments are implemented by decreasing it
by a factor of 0.1 at epochs 4, 8, 12, 16, and 32.

Results We compare SIX-NET with several commonly used algorithms for med-
ical landmark detection [25,12,28,23], and the quantitative results are shown in
Table 1. It is observed that our SIX-NET outperforms the four SOTA on almost
all metrics on the test sets. This demonstrates the value of spatial-context in-
formation mixup from multiple perspectives, as the other methods mainly focus
on the spatial feature learned from a single level. Besides, our method presents
good generalization on the two CCA test sets (The SDR drop is much lower com-
pared to other methods), which is a justifiable phenomenon as bringing in extra
knowledge improves the robustness of the network and provides an aid to deal
with difficult situations. We also present qualitative results of different detection
methods in Fig. 3, and our method outperforms other methods significantly.

Ablation Study Ablation studies are conducted to evaluate the usefulness of
different modules of SIX-Net, i.e. Global-Local Mixup (GL-Mixup), Segmentation-
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Table 2. Sub-Module ablation. Best and Second Best are highlighted.

Module RF Catheter CS Catheter
GL SD IE MRE ↓ SDR (% ↑) MRE ↓ SDR (% ↑)

Mixup Mixup Mixup (mm) 0.5mm 1mm 2mm 4mm (mm) 0.5mm 1mm 2mm 4mm

✓ ✓ 0.5839 62.50 95.56 98.85 99.39 0.6369 71.96 95.26 97.83 98.41
✓ ✓ 0.8358 63.18 94.28 97.21 98.08 0.9808 77.05 95.14 97.84 98.51
✓ ✓ 0.9448 62.66 94.73 97.83 98.22 0.6523 78.57 96.11 98.13 98.67
✓ ✓ ✓ 0.4441 83.86 98.23 99.31 99.57 0.4327 84.99 98.96 99.56 99.80

Fig. 4. The results of bi-direction verification. Si: pseudo ground truth mask generated
by SAM. Ŝi: output of ϕS(Xi)). Ŝ∗

i : output of SAM using Xi and predicted landmarks
Ŷi. Yi: ground truth landmarks. Ŷi: the predicted landmarks. Ŷ ∗

i : output of SIX-Net
when replacing Ŝi with Si.

Detection Mixup (SD-Mixup), and Inter-Electrode Mixup (IE-Mixup). The fol-
lowing changes are modified on SIX-Net: (I) Replacing GL network with origin
U-Net; (II) Only use ϕD; (III) Using LD instead of L∗

D. The results are shown
in Table 2. Besides, we also conduct bi-direction verification on SIX-Net. (I)
Backward direction: We use the predicted landmarks Ŷi as the prompt for
SAM and compare the segmentation Ŝ∗

i = SAM(Xi, Ŷi) with Si; (II) Forward
Direction: We use Si to replace Ŝi and compare the predicted landmark Ŷ ∗

i

with Yi. The results are shown in Figure 4. The similar Dice between Ŝi and Ŝ∗
i

illustrates the backward precision of SIX-Net and the similar MRE between Ŷi

and Ŷ ∗
i proves the forward precision of SIX-Net.

5 Conclusion and Future Work

Accurate and efficient electrode detection in real-time fluoroscopy holds paramount
significance. In this work, we propose SIX-Net, which mixes up three-level spatial-
context information: between global and local features, between segmentation
maps and landmark heatmaps, and inter-electrode arragement, into the pipeline
for precise electrode localization in X-ray images. The results on the test set and
two CCA subsets illustrate the efficiency of our proposed SIX-NET compared
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with several SOTA methods. Further research could be conducted on the ex-
ploration of one-shot or few-shot methods to alleviate the burden of electrode
annotation and discover some efficient and low-cost methods for other types of
catheters.
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