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Abstract. A brain network is defined by wiring anatomical regions in
the brain with structural and functional relationships. It has an intri-
cate topology with handful early features/biomarkers of neurodegenera-
tive diseases, which emphasize the importance of analyzing connectomic
features alongside region-wise assessments. Various graph neural net-
work (GNN) approaches have been developed for brain network analy-
sis, however, they mainly focused on node-centric analyses often treat-
ing edge features as an auxiliary information (i.e., adjacency matrix) to
enhance node representations. In response, we propose a method that
explicitly learns node and edge embeddings for brain network analy-
sis. Introducing a dual aggregation framework, our model incorporates a
novel spatial graph convolution layer with an incidence matrix. Enabling
concurrent node-wise and edge-wise information aggregation for both
nodes and edges, this framework captures the intricate node-edge rela-
tionships within the brain. Demonstrating superior performance on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, our model
effectively handles the complex topology of brain networks. Furthermore,
our model yields interpretable results with Grad-CAM, selectively identi-
fying brain Regions of Interest (ROIs) and connectivities associated with
AD, aligning with prior AD literature.
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1 Introduction

Brain Network, a wiring system between different anatomical brain regions of
interest (ROIs), is typically viewed via the lens of a graph which comprises
nodes and edges [15, 18]. Various approaches utilize Graph Neural Networks
(GNNs) [7, 22] which primarily focus on node-centric analyses, emphasizing the
importance of understanding individual brain regions through the graph struc-
ture [13,21,25]. These methods face critical limitations when analyzing the topol-
ogy and connectomic features of brain networks, as the graph convolution in
GNNs utilizes the graph structure merely as the domain of node-specific mea-
sures to derive enhanced node representations [5,8]. In machine learning, efforts
have been spent to analyze the edges directly, but they typically do not consider
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Fig. 1: Comparison between entities passing and receiving messages in conven-
tional spatial convolution (a) and (b), and our proposed incidence matrix-based
convolution (c) and (d). The aggregating subject is represented in red, while
neighbors being aggregated are depicted in orange. (a): Node feature aggregation
for node, (b): Edge feature aggregation for edge, (c) Node feature aggregation
for edge, (d): Edge feature aggregation for node.

the analysis of the nodes [9,10]. Therefore, the limitations above necessitate de-
veloping a method for delving into both nodes and edges individually to derive
effective biomarkers from the brain network.

In response to these challenges and limitations, we propose a model that
captures the intricate connectivity features between ROIs as well as the region-
wise characteristics within the brain network from a geometric point of view
with simplex. Our model utilizes topological information from both 0-simplices
(nodes) and 1-simplices (edges) for graph convolution with Hodge Laplacian, ob-
taining explicit representations for each. Furthermore, they are mixed to obtain
a richer unified representation representing both 0- and 1-simplices. For this,
we introduce a dual aggregation framework, which is a novel graph convolution
layer that utilizes a boundary matrix, i.e., incidence matrix, for convolutions of
0-simplices and 1-simplices. It allows concurrent aggregation of node-wise and
edge-wise information, capturing the inter-simplex relationship, which is distinct
from conventional GNN models. Fig. 1 conceptually outlines the description of
individual aggregations from which nodes and edges are utilized for the convo-
lution.

Our contributions are summarized as follows: 1) Novel graph convolution
with incidence matrix: We introduce a spatial graph convolution layer, leveraging
the incidence matrix to model the intricate inter-simplex relationships within
the brain network, 2) Separate transformation of node and edge representations:
Unlike conventional models where edges play an auxiliary role, our model directly
trains on both node and edge representations, 3) Superior performance and
interpretability: Demonstrating superior performance on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, our model showcases interpretability
in classification results by selectively identifying brain Regions of Interest (ROIs)
and connectivities associated with Alzheimer’s disease using Grad-CAM [20].
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2 Related Work

There are models that focus solely on edge features to obtain edge representa-
tions. Authors in [10] utilized hypergraph transformation to acquire edge rep-
resentations, demonstrating its validity on data such as molecules and social
datasets, where edge information is crucial. [14, 17] showed efficacy in clas-
sification of neurological disorders by learning connectomic features between
ROIs without utilizing node-wise features on structural brain datasets. On the
other hand, several methods suggested jointly learning node and edge embed-
dings [5,8,24]. These models iteratively learn node and edge embeddings, obtain-
ing explicit edge representations, which are then used as auxiliary information
to enhance the final node representations. Besides, [9] employed a transformer
to perform edge representation learning for text information on edges.

3 Preliminary

A simplicial complex, a fundamental concept in topological data analysis (TDA),
refers to a collection composed of simplices. Starting from 0-dimension, a simplex
extends to higher dimensions, representing basic forms such as a 0-simplex for a
point (node), a 1-simplex for a line (edge), a 2-simplex for a triangle, etc. This
concept enables a concise representation of complex data, particularly aiding in
understanding topological properties of graphs or networks. Typically, a graph
can be considered as a simplicial complex made up of 0-simplices (nodes) and
1-simplices (edges) [1, 23].

A boundary matrix Bp represents the relationship between p-simplices and
(p − 1)-simplices in a simplicial complex. Moreover, a Hodge Laplacian can be
defined with Bp, i.e., Lp = BT

p Bp+Bp+1BT
p+1, which generalizes the conventional

graph Laplacian from 0-simplices to p-simplices [19]. A boundary matrix B1 ∈
RN×M , where N is the number of nodes and M is the number of edges, signifies
the association between 0-simplices and 1-simplices. Commonly referred to as an
incidence matrix, it provides details on how each edge connects two nodes, as:

(B1)ij =


−1 if edge ej leaves vertex vi,

1 if edge ej enters vertex vi,

0 otherwise.
(1)

Using this incidence matrix, the Hodge 0-Laplacian L0, equivalent to graph
Laplacian, and Hodge 1-Laplacian L1 are defined as:

L0 = B1BT
1 , (2)

L1 = BT
1 B1 + B2BT

2 = BT
1 B1. (3)

Here, since a graph is composed of 0-simplices and 1-simplices only, B2 = 0
resulting in L1 = BT

1 B1. In this way, we can derive L0 ∈ RN×N and L1 ∈ RM×M

directly from the incidence matrix B1.
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Fig. 2: The overall process of the proposed method. Both node and edge features,
i.e., X and E, are convolved with incidence matrix and Laplacians through Dual
and Multi-hop aggregations for a unified representation.

4 Method

Consider an undirected weighted graph G = (A,X,E) composed of N nodes
and M edges, along with a multi-variate feature matrix X = {x1, ..., xN} ∈
RN×dx for the nodes and a E = {e1, ..., eM} ∈ RM×de for the edges in dx- and
de-dimension, respectively. A ∈ RN×N represents a binary adjacency matrix
indicating node connections. From A, connectivities between nodes and edges
are determined and it can be expressed as the incidence matrix B1. Utilizing B1,
we obtain L0 and L1 through Eq. (2) and Eq. (3).

The complete configuration of our model is illustrated in Fig. 2. To separately
learn node and edge representations, we conduct graph convolution on nodes and
edges using L0 and L1, respectively. Simultaneously, we perform graph convo-
lution using B1 to obtain embeddings based on the node-edge relationships for
each node and edge. The resulting embeddings are then individually combined
for each node and edge using element-wise averaging to achieve topologically en-
hanced embeddings. Subsequently, additional convolution layers utilizing L0 and
L1 facilitate the exploration of a broader range of graph structures. The obtained
embeddings for nodes and edges are concatenated and input into a multi-layer
perceptron (MLP), yielding class predictions. Layer normalization [2] is applied
to X and E before model input to prevent biased learning, considering the di-
verse distribution of features. Through this comprehensive process, our model
effectively captures the complex topology of the brain network based on node-
edge connectivity.

4.1 Dual Aggregation for Nodes

Let f1(·) and f2(·) be functions designed to generate embeddings for nodes,
mapping Rdx → RH and Rde → RH , respectively, where H represents the hidden
dimension. In the context of conventional node-wise spatial graph convolution,
we utilize L0 to aggregate information about neighboring nodes for each node,
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resulting in the following embedding:

f1(X
(0)) = σ(L0X

(0)θ(0)), (4)

where θ(0) denotes learnable parameters and X(0) = X. Here, σ(·) signifies a
rectified linear unit (ReLU) nonlinearity, consistently used with the same mean-
ing throughout. Subsequently, for edge-wise feature aggregation for each node,
we employ B1 as:

f2(E
(0)) = σ(B1E

(0)θ(1)), (5)

where θ(1) denotes learnable parameters and E(0) = E. Through this process,
each node captures information about its neighboring edges. The obtained em-
beddings f1(X

(0)) and f2(E
(0)) are then combined to derive X(1):

X(1) = (f1(X
(0)) + f2(E

(0)))/2. (6)

Thus, X(1) encompasses information about both the adjacent nodes and edges.

4.2 Dual Aggregation for Edges

Let g1(·) and g2(·) be functions designed to obtain embeddings for edges, each
mapping Rde → RH and Rdx → RH . As done in [17], we utilize L1 for edge-wise
spatial graph convolution to capture information about neighboring edges for
each edge:

g1(E
(0)) = σ(L1E

(0)θ(2)), (7)

where θ(2) denotes learnable parameters. Next, for node-wise feature aggregation
per edge, we employ BT

1 as follows, with θ(3) representing learnable parameters:

g2(X
(0)) = σ(BT

1 X
(0)θ(3)). (8)

Through this, each edge takes information about its neighboring nodes, i.e.,
the two nodes connected by the edge. The obtained embeddings g1(E

(0)) and
g2(X

(0)) are then average-pooled to derive E(1):

E(1) = (g1(E
(0)) + g2(X

(0)))/2. (9)

As a result, E(1) involves information regarding both adjacent edges and nodes.

4.3 Multi-hop Aggregation

The embeddings X(1) and E(1) obtained through dual aggregation encapsulate
information exclusively from directly connected nodes and edges. To achieve a
broader scope of information, additional layers utilizing L0 and L1 are consecu-
tively stacked K-1 times, facilitating multi-hop aggregation as done in [22]. For
this purpose, we define h1(·), h2(·) : RH → RH as:

X(k+1) = h1(X
(k)) = σ(L0X

(k)θ(2k+2)) k = 1, . . . ,K − 1, (10)

E(k+1) = h2(E
(k)) = σ(L1E

(k)θ(2k+3)) k = 1, . . . ,K − 1. (11)
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Since X(1) and E(1) already contain information about neighboring nodes and
edges through convolution with the incidence matrix, subsequent convolution
using L0 and L1 alone ensures comprehensive information propagation for both
nodes and edges.

The resulting embeddings X(K) ∈ RN×H and E(K) ∈ RM×H are concate-
nated (||), flattened, and fed as input to an MLP. Following a softmax layer, the
model produces its final output Ŷ . Specifically, the class prediction Ŷ c for each
class c is expressed as:

Ŷ c =
MLP(X(K)||E(K))c∑

c′∈C MLP(X(K)||E(K))c′
. (12)

Finally, the model is trained on T samples using the cross-entropy loss:

Lce = −
T∑

t=1

∑
c∈C

Y c
t log Ŷ c

t , (13)

where, for the t-th sample, Y c
t = 1 if the class is c, and Y c

t = 0 otherwise.

5 Experiments

5.1 Dataset and Setup

Dataset. Diffusion Tensor Images (DTI) for a total of N=2020 subjects from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) are used. The images
were registered on the Destrieux atlas [4], which includes 148 cortical regions
and 12 subcortical regions. Applying tractography yields structural brain net-
works, representing 160 regions as nodes and the white matter fiber tracts be-
tween these nodes as edges, and the number of tracts between the regions serves
as edge weight. For each subject, three types of node features were measured
region-wise: cortical thickness from MRI, and Standardized Uptake Value Ra-
tios (SUVR) of β-amyloid and FDG from PET, where SUVR was normalized
with the Cerebellum as the reference. The dataset comprises five diagnostic la-
bels: 843 Control (CN), 197 Significant Memory Concern (SMC), 490 Early Mild
Cognitive Impairment (EMCI), 250 Late Mild Cognitive Impairment (LMCI),
and 240 Alzheimer’s Disease (AD) subjects. Details regarding the number of
subjects available for each feature can be found in the supplementary materials.
Setup. Experiments are conducted for four scenarios with node measures, i.e.,
using 1) cortical thickness, 2) Amyloid-PET, 3) FDG-PET and 4) all three to-
gether. The structural brain networks for all subjects are averaged and edges
below a specific threshold (=10000) are dropped. Additional details on the effect
of thresholds on number of edges and model performance can be found in the
supplementary. As baselines, the following models, utilizing both node and edge
features, are used: Support Vector Machine (SVM), GCN [22], CensNet [8], and
EGNN [5]. SVM takes the flattened concatenation of node and edge features as
input, and the others, including ours, are evaluated by stacking two layers. For
our model, additional evaluations are conducted under two distinct conditions:
when the number of hops (= K) is 1 and in the absence of dual aggregation.
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Table 1: Comparison of model performance with 5-fold cross validation. Two-
hop configurations (K = 2) are used across models, SVM excepted. Our model
is further evaluated at K = 1 and without dual aggregation (DA), respectively.

Method Cortical Thickness β-Amyloid
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SVM 66.29 77.22 55.69 61.18 71.17 78.13 67.98 71.12
GCN [22] 80.79 83.27 77.59 79.82 82.79 85.16 82.67 83.58
EGNN [5] 82.48 84.48 79.12 81.30 82.26 83.74 81.84 82.43
CensNet [8] 82.18 85.27 79.20 81.73 85.25 87.65 84.70 85.92

Ours 86.53
(±1.85)

87.34
(±1.11)

84.65
(±2.35)

85.85
(±1.74)

89.34
(±1.77)

90.11
(±1.52)

89.81
(±1.91)

89.91
(±1.70)

Ours (K = 1) 86.09
(±0.90)

86.55
(±0.54)

84.66
(±1.94)

85.42
(±1.01)

89.49
(±1.67)

90.59
(±1.53)

89.24
(±1.72)

89.80
(±1.61)

Ours (w/o DA) 82.97
(±1.82)

83.72
(±1.52)

81.51
(±1.67)

82.48
(±1.47)

85.62
(±1.61)

87.33
(±1.71)

85.50
(±1.30)

86.30
(±1.39)

FDG All Features
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SVM 71.06 75.89 69.36 71.63 71.32 76.43 68.94 71.32
GCN [22] 81.56 83.59 82.14 82.44 82.42 84.06 82.84 83.19
EGNN [5] 90.32 91.21 90.70 90.79 89.38 90.56 89.65 89.91
CensNet [8] 82.83 84.50 82.93 83.55 84.28 86.28 84.07 84.98

Ours 91.22
(±2.45)

92.34
(±2.23)

91.74
(±1.87)

91.94
(±1.96)

91.81
(±0.77)

92.95
(±1.05)

92.03
(±0.76)

92.38
(±0.75)

Ours (K = 1) 91.68
(±1.82)

92.52
(±1.81)

92.19
(±1.42)

92.26
(±1.56)

93.03
(±1.06)

93.90
(±1.17)

93.35
(±1.02)

93.53
(±0.93)

Ours (w/o DA) 87.47
(±2.34)

88.97
(±2.56)

88.13
(±1.55)

88.41
(±1.90)

86.87
(±1.55)

87.40
(±2.22)

87.18
(±0.98)

87.14
(±1.48)

Table 2: The Grad-CAM outcomes depicting the top-10 ROIs (Left) and con-
nectomes (Right) with the highest activation to classify AD. The indices align
with the index values in the Destrieux atlas [4].
idx ROI Activation
159 right-putamen 0.9025
153 left-putamen 0.8224
18 left-g.insular.short 0.7131
97 right-g.oc-temp.med-parahip 0.6752
92 right-g.insular.short 0.5580
17 left-g.ins.lg.and.s.cent.ins 0.5559
117 right-pole.temporal 0.5552
149 left-amygdala 0.5445
43 left-pole.temporal 0.5060
23 left-g.oc-temp.med-parahip 0.5014

idx1 ROI1 idx2 ROI2 Activation
98 right-g.orbital 159 right-putamen 0.7101
18 left-g.insular.short 153 left-putamen 0.6980
92 right-g.insular.short 159 right-putamen 0.6708
24 left-g.orbital 153 left-putamen 0.6707
52 left-s.front.inf 153 left-putamen 0.6410
43 left-pole.temporal 149 left-amygdala 0.6347
117 right-pole.temporal 155 right-amygdala 0.6346
68 left-s.precentral-inf-part 153 left-putamen 0.6345
64 left-s.orbital-h.shaped 153 left-putamen 0.6252
17 left-g.ins.lg.and.s.cent.ins 153 left-putamen 0.6206

5.2 Results

Quantitative Results. As shown in Tab. 1, recent models, i.e., CensNet and
EGNN, outperform traditional baselines such as SVM and GCN, but our model
for both K = 1, 2 consistently demonstrates the highest performance across all
datasets when compared to all baselines. The performance ranking of our model
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(a) (b) (c) (d)

Fig. 3: Visualization of the top-10 ROIs and connectomes with the highest acti-
vation for classifying AD. (a)/(b): outer view of left/right hemisphere, (c)/(d):
top/bottom. Blue nodes belong to the cortical region, and red nodes belong to
the subcortical region. Node size and edge color/thickness represent the activa-
tion.

in K = 1, 2 varies depending on the node features and evaluation metric used.
Furthermore, it can be observed that our model without dual aggregation shows
inferior performance in all cases compared to when it is present, indicating the
efficacy of dual aggregation.

Analysis on the Grad-CAM Results. Using class-averaged Grad-CAM [20],
we obtained clinically interpretable results on the impact of each ROI and con-
nectome in the classification of the brain network. In Tab. 2, we specified the
top 10 nodes and edges displaying the highest gradient activation for classifying
AD, while Fig. 3 visually depicts them.

Regarding ROIs from both nodes and edges, our model selected four ROIs
(left/right putamen, left/right amygdala) within the subcortical region. Interest-
ingly, putamen exhibited the highest activation among the nodes, concentrated
on 8 out of 10 connectomes. These regions are known to exhibit significant
atrophy in AD subjects compared to normal individuals [3, 11]. In the tempo-
ral lobe, the parahippocampal gyrus and temporal pole are detected. Notably,
the parahippocampal gyrus plays a crucial role in memory encoding and re-
trieval [12,16], with patients diagnosed with AD showing noteworthy reductions
in its gray matter volume [6].

Additionally, our model selected the same 6 regions (putamen, short insular
gyri, parahippocampal gyrus, temporal pole, amygdala, orbital gyri) in both the
left and right hemispheres, indicating its ability to identify consistent features
on both hemispheres of the brain. There are also 8 common ROIs (left/right
putamen, left amygdala, left/right short insular gyri, left long insular gyrus and
central sulcus of the insula, left/right temporal pole) selected for both nodes and
edges. It can be inferred that, via dual aggregation, each node and edge adeptly
incorporate information from one another.
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6 Conclusion

We proposed a model that explicitly learns both node and edge features of a
graph, effectively capturing complex node-edge relationships. Utilizing the in-
cidence matrix, our model employs a dual aggregation framework to enable
both 0-simplices (nodes) and 1-simplices (edges) to gather information from
their surrounding 0- and 1-simplices. This holds the potential to be extended to
higher-dimensional simplices. With the interpretablity identifying key ROIs and
connectomes related to the progression of AD, the superior performance on the
ADNI dataset demonstrates our model’s capability in analyzing both region-wise
and connectomic features of a brain.
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