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Abstract. The Transformer architecture and versatile CNN backbones
have led to advanced progress in sequence modeling and dense predic-
tion tasks. A critical development is the incorporation of different to-
ken mixing modules such as ConvNeXt, Swin Transformer. However,
findings within the MetaFormer framework suggest these token mixers
have a lesser influence on representation learning than the architecture
itself. Yet, their impact on 3D medical images remains unclear, motivat-
ing our investigation into different token mixers (self-attention, convo-
lution, MLP, recurrence, global filter, and Mamba) in 3D medical im-
age segmentation architectures, and further prompting a reevaluation
of the backbone architecture’s role to achieve the trade off in accuracy
and efficiency. In the paper, we propose a unified segmentation architec-
ture—MetaUNETR featuring a novel TriCruci layer that decomposes the
token mixing processes along each spatial direction while simultaneously
preserving precise positional information on its orthogonal plane. By em-
ploying the Centered Kernel Alignment (CKA) analysis on feature learn-
ing capabilities among these token mixers, we find that the overall archi-
tecture of the model, rather than any specific token mixers, plays a more
crucial role in determining the model’s performance. Our method is vali-
dated across multiple benchmarks varying in size and scale, including the
BTCV, AMOS, and AbdomenCT-1K datasets, achieving the top segmen-
tation performance while reducing the model’s parameters by about 80%
compared to the state-of-the-art method. This study provides insights for
future research on the design and optimization of backbone architecture,
steering towards more efficient foundational segmentation models. The
source code is available at https://github.com/lyupengju/MetaUNETR.
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1 Introduction

Significant strides in the field of deep learning (DL) have been notably pro-
pelled by advancements in sequence models [5]. Their extensive versatility is
empirically showcased across diverse domains including natural language un-
derstanding, time series forecasting as well as computer vision (e.g., ViT [1]
when images are cast into sequentially patchified representations). The formu-
lation of DL models for sequential data revolves around the conceptualization
of sequence-to-sequence transformations, leveraging basic token mixers such as
convolutions, self-attention or recurrence, and consequently giving rise to the
prominent families of deep sequence models [2], namely, convolutional neural
networks (CNNs), Transformers, recurrent neural networks (RNNs), and recent
emergence of state space model notably exemplified by Mamba [3,14].

The transformative impact of deep sequence models has in recent years re-
shaped the landscape of medical image analysis. Multi-organ segmentation, a
critical task in understanding anatomical structures for clinical diagnosis and
treatment planning, has witnessed a paradigm shift from CNNs to Transformers
which demonstrate efficacy for capturing long-range dependencies [19]. Under the
prevailing notion that the attention-based token mixer module is the primary
contributor to the competence of Transformers, Since UNETR [4], pioneering
works have been focusing on integrating diverse self-attention variants as back-
bone cores within the U-Net topology [18], for instance, Swin UNETR [20], and
UNesT [24] employed Swin Transformer [11] and Nested Transformer [25] respec-
tively, achieving promising performance in modeling high anatomical variability.
Subsequent investigations have also revealed that the overarching architecture
of Transformers, often referred to as MetaFormer [23], plays a more pivotal role
in determining the models’ performance. The success achieved by modernized
ConvNeXt [12] and MLP-Mixer [22] within the MetaFormer architecture chal-
lenges the predominant emphasis on attention, signifies a resurgence of CNN and
MLP paradigms [22]. 3D UX-NET [9] substantiates this notion by substituting
self-attention modules in Swin UNETR with efficient large kernel depthwise
convolutions, yet achieving state-of-the-art multi-organ segmentation accuracy.
Despite the notable achievements garnered by employing various novel token
mixers encoded Metaformer-style models in multi-organ segmentation, the de-
tailed comprehension of why specific mixers outperform others in this domain
remains largely unexplored. Additionally, these models, regardless of the scale of
training data set and hardware constraints frequently incur compromised com-
putation efficiency. There is a desire to enhance and optimize the architecture to
attain superior segmentation performance, though this has not yet become the
primary focus.

In this study, our objective is to understand the learning differences among
various mixer types and their influence on overall volumetric segmentation tasks.
We aim to answer the following research questions regarding mixer selection and
backbone architecture design: 1) Which mixer type has superior and more effi-
cient representational learning capabilities in 3D medical image segmentations?
2) The importance and impact of the architecture in comparison to these to-
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ken mixers. 3) Whether the backbone architecture can be optimized to achieve
the superior segmentation performance balancing the tradeoff between accu-
racy and efficiency. To this end, we propose MetaUNETR comparing 6 token
mixers spanning self-attention (Attn) [20], convolution (Conv) [12], MLP [22],
recurrence (Recur) [21], global filter (GF) [17], and Mamba [3] for multi-organ
segmentation. Our findings indicate that the efficacy of MetaUNETR is primar-
ily derived from the learning capabilities of the top shallow layers, irrespective of
the specific type of token mixers utilized for feature learning. Our main contribu-
tions are summarized as follows: 1) We propose a generic segmentation network-
MetaUNETR featuring a lightweight TriCruci layer, specifically designed for
independent token mixing along spatial directions. 2) Leveraging the Centered
Kernel Alignment (CKA) analysis, we demonstrate the reduced dominance of
various token mixers on feature learning and highlight the importance of features
within the upper encoder layers while identifying redundant computations in the
deeper layers. 3) Through validation on the BTCV, AMOS, and AbdomenCT-
1K datasets, MetaUNETR realizes state-of-the-art segmentation performance
with a significantly smaller model size (with 20% parameters) compared to prior
arts.

Fig. 1. Architectural overview of the proposed MetaUNETR framework. The
MetaFormer encoder backbone integrates diverse token mixer modules, including self-
attention, convolution, MLP, recurrence, global filter, and Mamba. The TriCruci layer
performs efficient token mixing decomposed along each spatial dimension (depth, height
and width) before fusion, synergistically encoding three-dimensional contextual infor-
mation.
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2 Methods

2.1 MetaUNETR architecture

Our MetaUNETR architecture adopts a hierarchical multi-scale encoder-decoder
design inspired by UNETR [4] to effectively model both local details and global
context for volumetric segmentation, as seen in Figure 1. The input image, char-
acterized by a sub-volume X ∈ RH×W×D×C with H,W,D and C denoting the
spatial dimensions and the number of channels, is initially partitioned into a
sequence of patches (patch size = 2) and projected into an embedding space of
dimension S = 48 through a stem convolution layer. The resultant embedded
tokens X ′ ∈ RL×S , L = H

2 ×
W
2 ×

D
2 , are fed to a series of MetaFormer blocks,

constituting four encoder stages wherein the channel number doubles while fea-
ture maps reduce their resolution by half. Each encoder stage comprises two
residual sub-blocks with the first one housing a token mixer layer while the
subsequent sub-blocks integrating an inverted bottleneck MLP layer. Through
residual blocks-enhanced skip connections, the multi-resolution encoder features
are concatenated with the decoder composed of residual blocks and transposed
convolutions for fine-grained feature recovery. The ultimate decoder feature is
processed through a 1 × 1 × 1 convolutional layer in conjunction with a Softmax
layer, culminating in the generation of the final segmentation probability map.

2.2 Token mixers in MetaUNETR

The fundamental purpose of token mixers is generally to enhance the original
feature space of input sequence X through introducing an inductive bias charac-
terized as dependencies during a designated ‘mixing’ process, which is paramet-
rically defined by θ and determining how information across X is aggregated. We
categorize token mixers into the following two paradigms: 1) Content-Dependent
Mixing. The mixing process is intricately tied to the content of the input se-
quence, allowing for adaptability and context-aware feature interactions, e.g.,
self-attention and Mamba. 2) Content-Agnostic Mixing. The mixing process is
determined solely by the internal parameters of the token mixer and remains
fixed across all input signals, e.g., depthwise convolution, MLP, global filter, and
recurrence.

TokenMixer (·|θ)⊥̸⊥ X :

Y Attn
t := Softmax

(
Q (Xt)K (X)

T
)
V (X) ;

Y Mamba
t := C (Xt)

(
Ā (Xt)ht−1 + B̄ (Xt)Xt

)
Ā, B̄ ← discretize (∆ (Xt) , A,B) ;

(1)
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TokenMixer (·|θ) ⊥⊥ X :

Y Conv
t :=

k−1∑
k=0

X−k+tw
Conv
k ;

Y MLP
t :=

(
XTWMLP

t

)T
;

Y GF := F−1
(
WGF ⊙F (X)

)
;

Y Recur
t := WMLP

t

(
tanh

(
WMLP

hh ht−1 +WMLP
hx Xt

))
.

(2)

For the sake of simplicity, we exclude considerations related to scaling, nor-
malization, and biases. Xt/Yt denote the tth token of input/output sequence
and ht is implicit latent states. F represent discrete Fourier transform operator,
W tokenmixer signifies learnable static weight while Q,K, V, Ā, B̄,∆ are dynamic
embeddings from X.

2.3 TriCruci layer

To circumvent the substantial computational overhead and proliferation of model
parameters arising from the flattening of volumetric data into sequential repre-
sentations requisite for token mixing operations, motivated by the effectiveness of
multi-branch design [10], we propose a novel Triple-Cruciform (TriCruci) archi-
tecture design for integrating three-dimensional spatial knowledge in our token-
mixer layer. Conceptually, it synergistically amalgamates orthogonal spatial cues
along the cardinal dimensions of height, width, and depth for volumetric data
representation learning while preserving the precise positional information on
their respective perpendicular planes, i.e., coronal (co), sagittal (se) and trans-
verse (tr), as illustrated in Figure 1.

For an input X ∈ RH×W×D×C ,
{
Xdepth

:,tr,: ∈ RD×C
}H×W

tr=1
can be regarded as an en-

semble of sequences, where D signifies the quantity of tokens along the depth
direction, C denotes the channel dimension and H ×W represent the number
of sequences in the transverse plane. Following Equation 1 and 2 , token mix-
ing is applied to all input sequences Xdepth

:,tr,: in a weight-sharing paradigm. We

combine:
{
Y depth

:,tr,: ∈ RD×C
}H×W

tr=1
into: Y tr ∈ RH×W×D×C ,

{
Xheight

:,co,: ∈ RH×C
}W×D

co=1
into

Y co ∈ RH×W×D×C and
{
Y width

:,sa,: ∈ RW×C
}H×D

sa=1
into Y sa ∈ RH×W×D×C in similar man-

ner, which are then summed and processed point-wisely in a fully-connection
layer FC (·):

Y = FC
(
Sum

(
Y tr,Y co,Y sa

))
. (3)

2.4 Measuring Representational similarity with linear CKA

We employ linear Centered Kernel Alignment (CKA) [7,16] to assess the align-
ment or divergence of learned representations among various neural network
architectures. Let X1 ∈ Rm×n1 , X2 ∈ Rm×n2 denote network layer activa-
tions pertaining to the same set of m examples in a minibatch, n1 = n2 =
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H × W × D × C. Ranging from 0 (orthogonal) to 1 (identical), CKA lever-
age the Hilbert-Schmidt Independence Criterion (HSIC) with a linear kernel to
gauge the similarity between the centered kernel matrices K̃1 = HK1H and
K̃2 = HK2H: HSIC

(
K̃1K̃2

)
= vec

(
K̃1

)
vec

(
K̃2

)
/ (m− 1)

2, where the

two kernel matrices K1 = X1X1
T and K2 = X2X2

T encapsulate the pairwise
similarities between examples, H = Im − 1

m11T is the centering matrix with
Im being the identity matrix and 1 being a vector of ones of proper size. CKA
finally normalizes HSIC to yield a similarity index immune to isotropic scaling:

CKA (K1,K2) =
HSIC

(
K̃1K̃2

)
√

HSIC
(
K̃1K̃1

)
HSIC

(
K̃2K̃2

) . (4)

In practice, we obtain CKA as an average HSIC score over minibatches.

3 Experiments

3.1 Datasets and implementation details

To comprehensively evaluate impact of token mixers on model performance in
the context of multi-organ segmentation tasks, we deliberately curated a triad of
public datasets exhibiting progressive enlargement in population scale -BTCV [8]
(small), AMOS [6] (medium), and AbdomenCT-1K [15] (large) datasets. We em-
ploy 30 CT scans featuring detailed delineation of 13 distinct organs in BTCV,
300 and 1000 multi-contrast abdominal CT from AMOS and AbdomenCT-1K
spanning 16 and 4 anatomies respectively. The data preprocessing procedures
applied to these three datasets are consistent with the those outlined in UN-
esT [24] (BTCV), 3D UX-NET [9] (AMOS), MICCAI FLARE23 Challenge [13]
(AbdomenCT-1K).

We implemented MetaUNETR using the PyTorch1 and MONAI2 frameworks
on 4 NVIDIA RTX3090 GPUs. The AdamW optimizer was utilized against a
combination of cross-entropy and soft Dice losses. Model performances are re-
ported in terms of Dice score. Further details regarding dataset profiles and
training protocols can be found in the supplementary material.

3.2 Model Comparison among different token mixers

In order to compare the efficacy of MetaUNETR employing diverse token mixing
backbones, we evaluated model performances under uniform computational re-
source constraints characterized by commensurate FLOPs (327.64-330.48G) and
number of parameters (68.23-68.94M). In Figure 2, validation Dice scores were

1 http://pytorch.org/
2 https://monai.io/
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recorded over the course of training across the BTCV, AMOS, and AbdomenCT-
1K corpora, which reveals a predominantly comparable segmentation efficacy
demonstrated by the 6 token mixer configurations. Specifically, for the BTCV
and AMOS cohort, peak Dice averaged over the 10 anatomical targets reached
0.825 and 0.87 respectively with marginal dice fluctuations while AbdomenCT-
1K exhibited maximum Dice of 0.945 and superior stability. The broadly com-
petitive accuracies attained irrespective of exact encoder selections imply archi-
tectural flexibility in satisfying precision standards under fixed computational
budgets.

Fig. 2. The comparisons of segmentation performance on validation datasets during
training on the MetaUNETR across six token mixers. The achieved proximity Dice
scores reveal a reduced dominance of token mixers on feature learning against the
architecture.

To further investigate the model learning dynamics across token mixer back-
bones and unraveling the reason behind their similar segmentation performance,
we conducted a comparative evaluation of learned representational similarities
utilizing CKA applied to activations following the LayerNorm layer (5 at each
stage) of the models. The evaluation was carried out on models trained on the
BTCV dataset, as well as 200 CT scans from the AMOS and 300 from the
AbdomenCT-1K. The inputs consisted of central image cubes, cropped in ac-
cordance with the anatomical regions delineated by segmentation labels to focus
comparisons on target areas. Mini-batch size was set to 12 examples during sim-
ilarity computations. CKA results in Figure 3 reveal that self-attention demon-
strate highly concordant early-stage feature representations with alternate token
mixer variants, while diverging primarily in stage 4 encodings. This finding sug-
gests that a fourth stage provides limited additional specialization. Analogous
conclusions can be drawn from other pairwise similarity comparisons included in
the supplementary materials. The encoding similarity patterns suggest flexibility
in earlier-stage architectural configurations and depth specifications.

Inspired by previous findings, we eliminated the last stage of MetaUNETR
and conducted a comparative analysis against state-of-the-art models based on
convolutional (3D UX-NET) and self-attention mechanisms (UNesT, Swin UN-
ETR) across three datasets. As shown is Table 1 MetaUNETR demonstrates
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Fig. 3. CKA analysis comparing the representational similarity of intermediate features
across different token mixer in MetaUNETR. Substantial similarity is evinced among
encodings of the top three stages, while divergences manifest in the final one.

Table 1. Quantitative comparisons for multi-organ segmentation among three-layer
MetaUNETR and prior arts. The best results are indicated in bold.

Models
Swin

UNETR
(CVPR)

3D
UX-NET

(ICLR)

UNesT
(MedIA)

MetaUNETR (3 stages)

Attn Conv MLP Recur GF Mamba

Dice
BTCV 0.806 0.810 0.813 0.818 0.815 0.813 0.821 0.819 0.820
AMOS 0.887 0.881 0.886 0.893 0.890 0.890 0.897 0.895 0.893

AbdomenCT-1K 0.940 0.938 0.941 0.940 0.938 0.938 0.942 0.940 0.940

FLOPs (G) 331.56 639.45 261.73 64.53 63.65 63.52 63.95 62.87 63.62

Params (M) 69.94 53.08 87.30 14.70 14.55 14.93 14.95 14.31 14.37

comparable performance, achieving approximately 0.940 on the AbdomenCT-
1K dataset and marginally outperforming prior arts on the BTCV and AMOS
datasets, validating the effectiveness of the TriCruci layer. Notably, this com-
mendable performance is achieved while necessitating substantially fewer com-
putational resources. This efficiency gain not only translates into a more judi-
cious utilization of GPU memory but also facilitates an expansion of the training
batch size, thereby contributing to heightened computational efficiency and ac-
curacy. Corresponding visual demonstrations can be found in the supplementary
material.

4 Conclusion

In this study, we explored various token mixers and their impact on the MetaFormer
architecture for 3D multi-organ segmentation tasks. Our findings indicate that
the general architecture of MetaFormers is more vital for model performance
than any specific token mixer module. Comparative analyses using CKA uncov-
ered significant similarities and the importance of features within the upper en-
coder layers while also identifying redundant computation in the bottom layers.
Based on these findings, our proposed slim MetaUNETR optimizes the architec-
ture by pruning the redundant encoder stage and includes a novel TriCruci layer
for independent mixing processing in each spatial direction, enhancing the map-
ping of long sequences. Experimental evaluations on the BTCV, AMOS, and
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AbdomenCT-1K datasets demonstrated superior performance across all token
mixers, with the model size being significantly reduced by approximately 80%
compared to state-of-the-art multi-organ segmentation methods. We believe that
the MetaUNETR, with its design able to encapsulate a variety of token mixers
as modular components, can enhance the flexibility of encoder design and its
potential to reduce the architecture search space within AutoML frameworks
facilitating the creation of more resource-efficient foundational models.
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