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Abstract. In the era of Foundation Models’ (FMs) rising prominence
in AI, our study addresses the challenge of biases in medical images
while the model operates in black-box (e.g., using FM API), particularly
spurious correlations between pixels and sensitive attributes. Traditional
methods for bias mitigation face limitations due to the restricted access to
web-hosted FMs and difficulties in addressing the underlying bias encoded
within the FM API. We propose a D(ebiased) N(oise) E(diting) strategy,
termed DNE, which generates DNE noise to mask such spurious correlation.
DNE is capable of mitigating bias both within the FM API embedding and
the images themselves. Furthermore, DNE is suitable for both white-box
and black-box FM APIs, where we introduced G(reedy) (Z)eroth-O(rder)
(GeZO) optimization for it when the gradient is inaccessible in black-
box APIs. Our whole pipeline enables fairness-aware image editing that
can be applied across various medical contexts without requiring direct
model manipulation or significant computational resources. Our empirical
results demonstrate the method’s effectiveness in maintaining fairness
and utility across different patient groups and diseases. In the era of AI-
driven medicine, this work contributes to making healthcare diagnostics
more equitable, showcasing a practical solution for bias mitigation in
pre-trained image FMs. Our code is provided at https://github.com/u
bc-tea/DNE-foundation-model-fairness.
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1 Introduction

Using pre-trained models or encoders to convert complex input data into vector
representations is widely used in computer vision and natural language processing
(NLP) [8, 28]. This process transforms the original data into a representative
low-dimensional hidden space, preserving information for downstream tasks. With
the advancement of Foundation Models (FM), services like Google MedLM [20],
Voyage.ai, and ChatGPT provide data embedding services, eliminating the need
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for specialized hardware or extensive training. Their effectiveness is especially
notable in medical fields, addressing data scarcity and hardware constraints.
Clinics can enhance these models with minimal effort by fine-tuning custom
classifiers on compact embedding output from FM application programming
interface (APIs), which provides machine learning (ML) service as a function
without users to train their own models from scratch. However, the inherent
biases in the APIs’ training data and their model potentially harm marginalized
groups by perpetuating gender, race, and other biases, a problem that has been
exposed in the NLP field [3, 19]. The biased embedding can compromise models’
performance on minority groups [5, 9]. Therefore, it is essential to develop new
solutions to attain fairness in medical image embedding from pre-trained FM
API.

Studies have been done to address the fairness issues in classification problems
using ML models. These methods can be categorized into three approaches:
1)Model-based strategies update or remove bias-related model parameters to
mitigate bias, for example, using adversarial methods [1, 12, 24]; or prune param-
eters that are significant for sensitive attributes (SAs) [25]; or update model to
minimize the mutual information between target and SA representations using
disentanglement learning [4]. However, the pretrained FM API services offer
users very limited control over the model parameters [10, 11]. Thus model-based
approaches are infeasible under the constraints. 2)Prediction calibration-based
methods analyze the prediction probability distribution of a classifier and apply
different thresholds to each subgroup to reduce the discrepancy among sub-
groups [6, 16, 18]. These methods need custom thresholds for various tasks,
classes, and groups, which limits their generalizability. Moreover, a significant
amount of validation data is needed to determine the thresholds, rendering them
less efficient in medical imaging applications where data scarcity is an unavoid-
able problem. 3)Data-based strategies alleviate bias at the pre-training stage.
Re-distribution and re-weighting methods [17, 18] address unfairness by adjusting
the balance of subgroups. The effectiveness of redistributed training data is
limited because it can only affect the classification head, not the pre-trained
FM API embedding encoder. Recent data editing methods show strong ability
to reduce disparity among subgroups by removing sensitive information from
the input images [12, 23]. However, can leave the model unchanged, they fail to
address the underlying bias encoded within the black-box model, e.g., FM API.
Moreover, these approaches either depend on disease labels and require significant
computational costs. Yao et al. introduce an image editing method independent
on targeted downstream tasks via sketching [27], but this method suffers from
subpar performance as not learnable.

In this work, we take two unique properties of pretrained FM API into
consideration. Firstly, we aim to emphasize the need to maintain the flexibility
of using FM without limiting it to a specific task while maintaining good utility,
thus focusing on the learnable data editing-based method that is independent
of the downstream task. We choose to edit on the image space rather than on
the FM API embeddings since the former provides better control on medical
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image fidelity and enables interpretability on the applied editing (as shown in
App. B). Secondly, given the constraint against modifying parameters in the
pre-trained API, we commit to not changing the FM API model parameters,
even with black-box access to the API. To the best of our knowledge, no effective
and universal 1 method has been available to address this important, timely, but
challenging research question: How to remove bias on medical images when using
their embeddings from a pre-trained FM API for various classification tasks?

To answer this question, we propose the Debiased Noise Editing, DNE, where
the resulted edit can be shared across all subjects to eliminate SA-related in-
formation for various disease classification tasks. Specifically, we start by using
a pre-trained SA classifier, trained with the same FM API embeddings. Then,
we optimize a set of learnable parameters (referred DNE noise) to be added to
the images by confusing the SA classifier. Furthermore, we introduce a greedy
zeroth-order optimization strategy, GeZO, when APIs restrict gradient propaga-
tion in the black-box setting. Lastly, we apply this DNE noise to input images
to generate fair embeddings and achieve unbiased disease classification across
various disease tasks. Extensive evaluations on disease classification tasks show
our method’s effectiveness in promoting fairness while preserving utility.

2 Method

2.1 Problem Setting

This section outlines the problem of fairness in a binary medical image classifica-
tion task. Firstly, we define key variables: input images x ∈ X , binary disease
labels y ∈ Y = {0, 1}, and sensitive attribute a ∈ A = {1, ..., |A|} (i.e. |A| = 2
for gender with male and female). As patients may not have sensitive and dis-
ease labels simultaneously, we denote images with sensitive attribute labels as
{xi, ai}N = [XA, A] and images with disease label as {xj , yj}M = [XT , Y ], where
N and M are the number of samples. Then we denote the FM API as ϕ : X → Z,
to obtain the image embedding z = ϕ(x); the disease classifier as f : Z → Y and
SA classifier as g : Z → A. We summarize all notations in App. A.
Fairness Issue: Fig. 1 (a) shows there exists an association between sensitive
attributes A and targets Y (dashed line). In the Empirical Risk Minimization
(ERM) [22], the model f(ϕ(·)) superficially consider A as a proxy of Y , causing the
issue of fairness. This phenomenon persists even when there is an equal number
of data points for each class in both Y and A, as demonstrated in Sec. 3.1. Our
approach aims to address these disparities using debiased noise edit.

2.2 Debiased Noise Editing on Image for Fair Disease Classification

In this section, we present our image editing approach aimed at reducing bias
via learning a noise tensor with the same dimensionality as the image, which

1 We refer ‘universal’ as debiasing API embeddings for various classification tasks.
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Fig. 1: Overview of debias noise editing pipeline. (a) We eliminate the spurious
correlation by breaking the connection between SA A and image X , ensuring
the model relies solely on disease-related information Y. (b) Training DNE noise
deceives the pre-trained SA classifier in A using a frozen FM API and SA
classifier, suitable for both white-box and black-box API scenarios based on
gradient accessibility. (c) We demonstrate the use of DNE noise: users augment
their images with this noise, extract embeddings via the FM API, and proceed to
train fair disease classifiers. (d) The (G)reedy (Z)eroth-(O)rder (GeZO) black-box
editing method, selects the optimal perturbation via the Greedy Gradient process
when gradients is inaccessible. It tracks the best perturbation using velocity in
each local iteration to update the DNE noise ϵ.

is called DNE noise. Then, we explain how to use this DNE noise for fair disease
classification.
Debiased Noise Editing. Given the spurious correlation between SA A and
disease Y, we aim to remove this link through intervention on X by adding
minimal editing vector ϵ, known as DNE, concealing the spurious correlations
while preserving image utility. As shown in Fig. 1 (b), we first obtain a pre-trained
SA classifier for medical images by either leveraging an existing one (if available)
or using the collected [XA, A] to train the classifier g with cross-entropy loss.
Then, we freeze the classifier and leverage gradient ascent to learn the minimal
DNE noise ϵ, which is constrained by certain threshold to preserve image fidelity. ϵ
is trained to deceive the SA classifier g without compromising useful information
by solving the following optimization problem:

Lϵ = −

[
1

N

N∑
i=1

LCE(ai, g(ϕ(xi + ϵ)))

]
+ λ||ϵ||2 (1)
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where λ regularizes the magnitude of ϵ. For example, larger λ enforces the small
L2-norm of the ϵ in the process of gradient descent. Sec. 3.4 explores its effect
in detail. Importantly, we also offer a zero-order strategy for black-box APIs, as
detailed in Sec. 2.3.
Fair Disease Classification Having obtained the DNE noise ϵ to conceal the SA
A, we then freeze and add it to disease classification images XT . As shown in
Fig. 1 (c), this action guarantees that the FM generates a fair embedding devoid
of sensitive information, denoted as ẑi = ϕ(xi + ϵ). Finally, these fair embeddings
are leveraged by the subsequent disease classifier f for prediction. To train the
classifier f , we employ a cross-entropy loss:

LT =
1

M

M∑
i=1

LCE(yi, f(ϕ(xi + ϵ)), (2)

where classifier f is the only trainable parameter and M is the size of XT .

2.3 Greedy Zero-order Optimization for Black-box FM API

Zero-order (ZO) optimizations [2, 14], which avoid the need for gradient compu-
tations, offer distinct advantages in optimizing black-box models. However, these
methods often exhibit slower convergence rates, particularly in training large FM
models. In contrast, our proposed DNE, concentrating on the input space, offers a
mitigation of this training efficiency issue of ZO optimization.

Inspired by ZO-SGD [21] and recent MeZO [15] that employ in-place per-
turbation updates, we propose a G(reedy) Z(ero-)O(rder) (GeZO) optimization
specifically for efficient DNE. GeZO employs in-place perturbations [15, 21] and
greedily updates with the gradient sign that achieves global optimal loss, thereby
accelerating the optimization process. As shown in Fig. 1 (d), the core procedure
of GeZO is the Greedy Gradient in the right box, where the gradient of DNE’s
objective (Eq. 1) is estimated for each local iteration r ∈ {1, ..., |R|} in GeZO.
Greedy Gradient takes the DNE noise from the current local iteration (ϵr) and
estimates its gradient by continuously adding minor perturbations (δ) in different
directions (e.g., d1 and d2) to it, i.e., d1 · δ and d2 · δ. It then greedily selects the
best direction perturbation (dbest · δ) that results in the smallest objective in
this process. Like MeZO [15], we integrate stochastic sampling for C times. Each
time we calculate the objective using a subset of training data to avoid sucking
to the local optimum. Once the best direction and perturbation are selected for
each local iteration r, we add dbest · δ to the current velocity, vr. This velocity
keeps track of the accumulated updating direction and magnitude for ϵ for each
local iteration r, where the initial value for velocity v1 is 0. As shown in the right
part of Fig. 1 (d), vr+1 is updated by adding the best perturbation returned by
the Greedy Gradient. Finally, the DNE noise ϵr+1 is updated through adding the
vr+1. The local iterations |R| is a hyper-parameter, where a smaller iteration
increases the efficiency at the cost of the more biased gradient estimation. We
investigate the effect of different |R| in Sec. 3.4. In actual implementation, we also
introduced a momentum to update the velocity to accelerate the convergence.
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While the key idea is presented in this section, we provide a detailed step-by-step
algorithm box for GeZO in App. D.

3 Experiement

3.1 Settings

Dataset. To demonstrate the generalizability of DNE. we adopt the CheXpert
dataset [7], a chest X-ray dataset with multiple disease labels, to predict the
binary label for Pleural Effusion, Pneumonia and Edema individually in chest
radiographs. All the ablation studies are performed on Pleural Effusion clas-
sification task for space limit. We take gender bias (male and female) as an
example due to its broad impact on society and medical imaging analysis. To
demonstrate the effectiveness of bias mitigation methods, we follow [4] to amplify
the training data bias for each disease by (1) firstly dividing the data into different
groups according to the SA; (2) secondly calculating the positive rate of each
subgroup; (3) sampling subsets from the original training dataset and increase
each subgroup’s bias gap (more positive sample in a subgroup). Then, we sample
testing data with the same procedure, but achieve an equal subgroup bias gap.
The detailed data distribution is shown in Table 3 in App. C.
Evaluation metrics. We use the classification accuracy to evaluate the utility
of classifiers on the test set. To measure fairness, we employ equal opportunity
(EO) [6] and disparate impact (DI) [13] metrics. EO aims to ensure equitable
prediction probabilities across different groups, defined by the sensitive attribute
aj , for a given class yj . It quantifies the disparity in true positive rates between
groups: EOY=y1 = P (Ŷ = y1|Y = y1, A = a1) − P (Ŷ = y1|Y = y1, A = a2),
where a smaller gap signifies greater equality of opportunity. DI evaluates the
presence of indirect discrimination by measuring the ratio of positive predictions
across different groups: DI = P (Ŷ=1|A=a1)

P (Ŷ=1|A=a2)
. DI closing to 1 indicates the minimal

disparity in positive prediction rates between the groups. To align with EO metric,
we employ the |1−DI| to quantify the fairness in percentage, with smaller values
denoting greater fairness.

3.2 Implementation Details

Architecture. In our implementation, all methods use the same architecture. To
simulate the FM API, we utilize a publicly available self-supervised pre-trained
ViT-base model 2, optimized on X-ray images, given its superior performance
metrics among all other architectures [26]. Within our study, we fix the encoder
of the ViT model and only fine-tune the classification head, simulating the
configuration detailed in Sec. 2.1.
Debiased Noise Editing. For DNE, we first fine-tune the SA classifier, g, using
the feature encoded by the FM (ϕ(xi)) with the training set of Pleural Effusion

2 https://github.com/lambert-x/Medical_MAE

https://github.com/lambert-x/Medical_MAE
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Table 1: Comparision of binary prediction of Pleural Effusion, Pneumonia, and
Edema. We label the best performance in bold and the second-best performance
with underline. All the values are in percentage.

Diseases Pleural Effusion Pneumonia Edema
EOn ↓ EOp ↓ |1-DI| ↓ Acc ↑ EOn ↓ EOp ↓ |1-DI| ↓ Acc ↑ EOn ↓ EOp ↓ |1-DI| ↓ Acc ↑

ERM 40.5 57.0 58.5 72.9 70.0 70.0 74.5 59.6 42.0 39.0 42.0 74.5
Sketch [27] 44.0 52.0 57.5 66.3 64.0 61.0 72.6 56.3 44.0 15.0 15.5 67.0
Group DRO [18] 41.0 58.0 59.5 72.3 60.0 56.0 64.4 61.0 40.5 40.5 43.3 74.8
Batch Samp. [17] 41.5 50.5 51.8 74.3 64.0 72.0 76.6 60.5 39.0 43.0 44.8 76.0
BiasAdv [12] 39.0 54.5 58.2 71.1 36.0 54.0 77.1 61.0 39.0 33.5 36.6 74.9
DNE 28.5 23.0 25.6 75.1 38.0 25.0 34.7 61.3 27.5 17.0 19.7 75.6
DNE-GeZO 37.0 25.0 28.5 72.8 35.0 27.0 33.7 61.5 34.0 15.5 17.2 75.1

in Table 3. We update it using Adam with a learning rate (lr) of 0.0001 for 50
epochs. Second, we update the DNE through implementing Eq. 1 by initializing
ϵ as a trainable PyTorch parameter with all entries initially set to zero. The
parameter matches the input image dimensions of 224 × 224. The DNE can be
optimized using classic gradient descent or GeZO. Finally, we fine-tune the disease
classifier, f , with ϵ added on the input data as delineated in Eq. 2. We update it
using AdamW with lr of 1.25× 10−4 for 50 epochs. We provide the visualization
of the magnitude of DNE as an interpretation of DNE in App. B Fig. 3, where DNE
is smoothed by the Gaussian kernel. As shown, larger noises are added to the
bottom to discriminate the gender-related features.
GeZO. Here, we keep all parts for DNE the same as above, except using GeZO to
update the edit rather than the Adam, given that the gradient is not accessible.
The only key parameter that we are interested in is the local iteration T , where
we investigated it in Sec. 3.4. Furthermore, the detailed implementation of the
algorithm and hyperparameter setting for GeZO can be found in App. D.

3.3 Comparison with Baselines

Quantitative Analysis. Table 1 summarizes the performances among dif-
ferent diseases and baselines. The baselines include model-based strategy, like
biasAdv 3 [12]; data-based strategies, like batch sampling [17] with data re-
distribution and sketch [27] with data generation; and prediction calibration-
based strategy, like Group DRO [18]. The details of these baselines are introduced
in Sec. 1. The results indicate that the DNE effectively balances fairness and utility.
Taking Pleural Effusion as the example to analyze, the white-box optimized
DNE outperforms all baselines. The EOp and DI decrease over 25% compared
to all the baselines, an indication of less disparity between the two genders.
Additionally, the utility not only maintains but also surpasses all other groups,
e.g., DNE’s accuracy (Acc) is higher than 2.2% compared to ERM. Given we are
using a balanced testing set, this increase is also a sign of better generalization.
3 In BiasAdv’s implementation, we treat FM API as a white box as it requires access

to FM’s gradient and there is no zeroth-order optimization for it yet.
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Similar for Pneumonia and Edema, where DNE and DNE-GeZO takes the best
two performance for almost all entries. Although learned through black-box
optimization, our DNE-GeZO achieves comparable performance to the standard
optimization used in DNE. This demonstrates not only the validity of GeZO but
also the efficiency afforded by the small number of edition parameters [15]. In
Pneumonia, DNE-GeZO even slightly surpasses the performance of DNE across most
metrics. These findings affirm the efficacy of DNE, where it not only facilitates fair
medical image embedding and training but also introduces better generalizability
in downstream classification tasks.

3.4 Ablation Studies

Effect of Regularization Coefficient. To investigate the effect of different
regularization coefficients’ (λ) effect, we vary λ from 0 to 1. Fig. 2 (a) depicts the
EO and the Acc for different λs. The metrics for ERM are labeled as horizontal
dashed lines for convenience. As shown, both the fairness and utility metrics
remain relatively stable for λ < 1, consistently surpassing the ERM baseline.
However, as λ increases to 1, we observe a marked decline in accuracy below
the ERM benchmark, along with a notable increase in the EO metric for both
classes.
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Fig. 2: Ablation study of our methods: (a) Effect of different λ; (b) Effect of
different local epochs using GeZO.

Effect of Local Iterations in GeZO. In black-box API, total local iterations
R in GeZO affect the optimization performance, wherein larger R leads to more
accurate optimization at the cost of efficiency. Here, we examine the effect of
changing R, as shown in Fig. 2 (b). For fairness metrics, increasing R from 2 to 20
significantly reduces the EO score for both classes, demonstrating a considerable
debiasing impact with more local epochs. This effect is attributed to increased
perturbation sampling that expands the search space with more local epochs, as
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introduced in Sec. 2.3. Meanwhile, accuracy remains relatively stable, with minor
fluctuations between 72% and 73%.

4 Conclusion

In this study, we address a crucial, yet under-explored aspect of health equity—the
inherent bias in FM API’s usage for classification—through the introduction
of debiased noise editing. DNE effectively masks bias-inducing pixels, enhancing
fairness in API-generated embeddings. Furthermore, GeZO tackles the challenge
of the inaccessibility of the gradient in black-box APIs by estimating gradients
via perturbation. Future research will extend DNE’s application across various
FM APIs and settings, aiming to solidify its role in promoting fairer machine
learning practices.
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