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Abstract. In this paper, we conduct an extensive exploration of a Vi-
sion Transformer (ViT) in brain medical imaging in a low-data regime.
The recent and ongoing success of Vision Transformers in computer vi-
sion has motivated its development in medical imaging, but trumping
it with inductive bias in a brain imaging domain imposes a real chal-
lenge since collecting and accessing large amounts of brain medical data
is a labor-intensive process. Motivated by the need to bridge this data
gap, we embarked on an investigation into alternative training strategies
ranging from self-supervised pre-training to knowledge distillation to de-
termine the feasibility of producing a practical plain ViT model. To this
end, we conducted an intensive set of experiments using a small amount
of labeled 3D brain MRI data for the task of Alzheimer’s disease clas-
sification. As a result, our experiments yield an optimal training recipe,
thus paving the way for Vision Transformer-based models for other low-
data medical imaging applications. To bolster further development, we
release our assortment of pre-trained models for a variety of MRI-related
applications: https://github.com/qasymjomart/ViT_recipe_for_AD

Keywords: Vision Transformer · Alzheimer’s Disease · Low-data regime

1 Introduction

The decade-long triumph of convolutional neural network-based (CNN) models
in computer vision has been overtaken by Vision Transformer (ViT) [7] mod-
els. Despite having vision-specific inductive biases such as locality and spatial
invariance [7], [1], CNN models fall short in accommodating long-range global
dependencies − the feature that transformer-based models tend to naturally
possess [25]. Long-range global dependencies are principally important in ana-
lyzing medical images, including brain MRI, the 3D high-dimensional nature of
which requires precise focus on important discriminative locations. Furthermore,
it is observed that 3D CNN models demand greater computational resources
compared to the ViT models. Yet, to achieve remarkable performance, Vision
Transformers remain data-hungry, i.e. they tend to require large amounts of data
to secure inductive bias [7]. A substantial number of works have been focused
on training Vision Transformers in a low-data regime [16], [18], [23], but only a
handful of works focus on brain imaging applications [17].

https://github.com/qasymjomart/ViT_recipe_for_AD
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Accordingly, the limited availability of structural brain MRI datasets, espe-
cially related to specific diseases like Alzheimer’s disease (AD), may hamstring
the development of accurate diagnostic tools. Although many prior works utilized
CNN models with remarkable results, CNN-based approaches often downsample
the input features, leading to the potential loss of information [21]. Other works
that adopt Vision Transformers either combine with CNN feature extractors in
a hybrid fashion or use large datasets for training [17], [14].

In this paper, we conducted empirical experiments with a plain ViT model
to process a limited amount of 3D brain MRI data. The main reason for focus-
ing on the plain version is to examine its potential without CNN-based feature
extractors. By examining various training strategies and their effectiveness, our
empirical experiments illustrate that a holistic orchestration of certain training
strategies can boost the performance of a ViT model when trained with a few
labeled samples. To summarize, our contributions can be outlined as follows:

– We pre-train the plain ViT model via self-supervised learning with the sepa-
rate brain MRI data from different clinical cohorts and transfer it to fine-tune
on AD classification task with few labeled data

– We explore the impact of pre-training with different pre-training data sizes
and several non-homogeneous pre-training datasets

– In fine-tuning, we further examine the performance of the model in more
extreme low-data scenarios

– We also investigate the application of different training methods such as 3D
data augmentations, regularization, and knowledge distillation

– To bolster further research in the brain MRI community, we make available
our assortment of pre-trained ViT models, trained with various combinations
of non-homogeneous MRI datasets.

2 Method

2.1 Training strategies

Model architecture Encoder model architecture is important for processing
brain MRI data and extracting global feature vector representations for further
downstream applications, like classification. In this work, we experiment with the
widely used configuration of the Vision Transformer −ViT-B [7], which has bal-
anced computational efficiency and model complexity with 12 layers, 12 heads, a
width of 768, and 86 million parameters. Since our input is 3D dimensional, we
design our model for 3D input by replacing a linear 2D patch embedding with a
3D equivalent (see Fig. 1) with the same patch size of 16.

Pre-training has become a de facto one of the key ingredients in developing
successful deep learning models [22], [9] and providing Vision Transformers with
inductive bias [7]. Furthermore, given the prevalence of a low-data regime in
medical imaging, particularly when related to diseases, we conjecture the impor-
tance of self-supervised pre-training using available medical data. To this end,
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Fig. 1. Masked Autoencoders (MAE) pre-training (a) and fine-tuning (b) for 3D brain
MRI data. For fine-tuning, pre-trained weights from the ViT encoder are transferred.
ViT = Vision Transformer; FC = fully connected layer; CN = Cognitively normal; AD
= Alzheimer’s disease

we pre-train the model with separate MRI data unrelated to Alzheimer’s disease
or dementia, for their wide availability and abundance among public datasets.

In this paper, we leverage Masked Autoencoders (MAE) [9] as a self-supervised
pre-training technique, due to its success with ViT. At first, an input 3D MRI
image is divided into non-overlapping patches with a fixed, sine-cosine 3D posi-
tional embedding. Then, we follow the original implementation [9]: a subset of
the patches is randomly masked and reconstructed by a lightweight decoder that
takes as input the encoder representations of the visible subset of patches as well
as the masked tokens, as shown in Fig 1. Similar to [9], we use an asymmetrical
architecture for the decoder with 8 layers, 16 heads, but with an embedding hid-
den dimension of 576 due to 3D data dimensionality. This decoder architecture
has a total of 36.9 million parameters.

Fine-tuning. The pre-trained weights of the encoder are transferred for fine-
tuning, while the fully connected classification head is randomly initialized. The
absolute sine-cosine positional embeddings are also transferred as initialization
weights for learnable positional embeddings. Then, the training of the model was
conducted in a supervised fashion using the labeled data.

We test MAE-based pre-training with three different masking ratios: 25%,
50%, and 75%. Furthermore, we explore the effect of the pre-training data size on
downstream performance as well as the combination of several non-homogeneous
pre-training datasets.

Fine-tuning with different amounts of data. The transformers-based mod-
els have been shown to excel in downstream tasks with few samples after pre-
training [4]. We similarly investigate it in brain imaging and further study the
generalizability of the ViT model under various low-data settings, that is, we
fine-tune with different fractions of labeled training data – 10%, 20%, 40%, 60%,
80%.
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Table 1. Dataset details. Pm(%) indicates the share of the majority class. CN =
Cognitively normal; AD = Alzheimer’s disease

Dataset Magnet strength AD CN Pm (%)

BRATS 2023 3T − 1251 −
IXI 1.5T/3T − 581 −
OASIS-3 3T − 625 −
ADNI1 1.5T 192 229 54.4
ADNI2 3T 159 201 55.8

Hyperparameters ablation. In fine-tuning, we investigate the effect of data
augmentation as well as a group of regularization methods of dropout, atten-
tion dropout, and drop path [11]. Following [8], our data augmentation strategy
incorporates a set of 3D medical data augmentations, which includes random
affine, random flipping, random rotation for 90 degrees, random scaling, and a
random shift of intensity, all with a probability of 0.2.

Knowledge Distillation through attention, which was introduced in ViT with
an additional distillation token by Touvron et al. [24], underscored the signifi-
cance of knowledge distillation [10] in enhancing transformer architecture effi-
ciency without supervised pre-training on the huge amount of external data. The
distillation token is assumed to interact with all other self-attention embeddings
and train with the distillation loss function [24], thus learning from a teacher
model’s predictions simultaneously. We similarly included this type of knowledge
distillation in our ablation study.

2.2 Datasets

Pre-training datasets. For pre-training based on MAE, we utilized three
different, public, and non-homogeneous T1-weighted structural MRI datasets:
BRATS 2023 [2], [3], [20], IXI1, and OASIS-3 [15]. Note that BRATS 2023 and
IXI datasets are unrelated to dementia and Alzheimer’s disease, while OASIS-3
includes images of individuals with various stages of cognitive decline, but we
utilized images of only cognitively normal cases. We did brain extraction of all
images of datasets using HD-BET [12]. More information on datasets is provided
in Table 1.

Fine-tuning datasets. For AD classification experiments we collected two
T1-weighted structural MRI datasets from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database2 [13], namely baseline collections of ADNI1 and
ADNI2. Each dataset contains structural MRI images of Alzheimer’s disease pa-
tients and cognitively normal adults. Similar to pre-training datasets, we only
1 https://brain-development.org/ixi-dataset
2 https://adni.loni.usc.edu

https://brain-development.org/ixi-dataset
https://adni.loni.usc.edu


Training ViT with Limited Data for AD Classification 5

Table 2. Cross-validation accuracies (%) for training from scratch and fine-tuning of
MAE pre-training across different masking ratios (25%, 50%, and 75%). Pre-training
significantly enhances accuracy. Best results are in bold.

ADNI1 ADNI2

Training from scratch 66.0± 0.86 69.3± 1.81

MAE-based fine-tuning
25% 74.5± 1.36 74.0± 1.67
50% 79.5± 1.09 79.2± 0.48
75% 79.6 ± 0.82 81.9 ± 2.17

perform brain extraction to pre-process the data minimally. More information
on datasets is also provided in Table 1.

2.3 Experimental setup

The default experimental setting is as follows. In all experiments, brain MRI
images are transformed in the following order: images are first resampled to the
same voxel spacing (1.75 × 1.75 × 1.75), followed by foreground crop, resizing
(128× 128× 128), and intensity normalization.

Following He et al. [9], we pre-train the model using the AdamW optimizer
[19] at an initial learning rate of 10−4, and employ a half-cycle cosine scheduler
with a 40-epoch linear warmup. We pre-train for 1000 epochs with a batch size
of 32. On top of the abovementioned transformations, we only apply random
spatial cropping.

In fine-tuning, we used an optimizer with an initial learning rate of 10−5 and
a cosine annealing scheduler. We train using cross-entropy loss for 50 epochs with
a batch size of 4. To determine a more accurate estimate of the performance in a
low-data regime, we run each fine-tuning experiment as a stratified 4-fold cross-
validation and use the best validation epoch to calculate the cross-validation
accuracy. We repeat all experiments three times and report the average.

All experiments are implemented using PyTorch and data augmentations are
accessed from MONAI [5]. The GPU configuration consisted of NVIDIA Titan
RTX with 24 GB of VRAM.

3 Results and Discussion

In this section, we discuss experimental results and our key findings. Unless
otherwise specified, reported results are for the pre-training with a masking
ratio of 75% and using all combined pre-training datasets. Also, all results are
with the best set of training methods found from our ablation study in Table 3.

3.1 Pre-training findings

Pre-training gives a considerable boost to the accuracy. Table 2 com-
pares the performance of fine-tuning with training from scratch. In general, we
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Fig. 2. Impact of the pre-training dataset size on fine-tuning. More pre-training data
leads to better fine-tuning. Pre-training was performed with a 75% masking ratio.

observe that fine-tuning the pre-trained weights enhances the accuracy of the ViT
model by a considerable margin in both AD classification datasets. When tested
across different masking ratios, 75% exhibited the highest performance increase
of up to 13.6% in ADNI1 and 12.6% in ADNI2. This is in line with the findings
of the original implementation of MAE in computer vision [9], and other related
works in medical imaging [26], [6]. Nevertheless, we emphasize that, in our exper-
iments, we perform pre-training with the data unrelated to Alzheimer’s disease
or dementia. Thus, our results demonstrate the transferability of pre-trained fea-
tures of ViT across different domains as well as its ability to boost performance
in downstream applications.

Pre-training data size is crucial & combining non-homogeneous pre-
training datasets is effective. Since we conducted pre-training with three var-
ious datasets, we also investigated the impact of pre-training data size on further
fine-tuning accuracy. Fig. 2 illustrates that the pre-training data size is propor-
tional to the fine-tuning accuracy, implying that more pre-training data yields
improved fine-tuning. We also observe that combining different non-homogeneous
datasets from different sources is effective in boosting the accuracy. Despite hav-
ing a mix of magnetic strengths (Table 1) in the pre-training data, both ADNI1
and ADNI2 benefited with increasing accuracy. We conjecture that further ex-
periments on pre-training with data augmentations would possibly result in im-
proved performance, and leave it for future research.

Pre-training allows to succeed with fewer labeled data even under ex-
treme low-data settings. Fig. 3 represents training with different fractions of
labeled data ranging from 10% to 100%. Generally, we observe that fine-tuning
with as few as 20% of training set produces the model more accurate than train-
ing from scratch with 100% data. Note that 20% of labeled data corresponds to
roughly 60 samples from both datasets. As a consequence, we conclude that the
ViT model enormously benefits from pre-training when trained under low-data
scenarios in brain imaging. Self-supervised pre-training with the available data,
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Fig. 3. Training with different fractions of labeled data. While pre-training is essential,
labeled data remains critical as well.

which is unrelated to the downstream task, could therefore be advantageous
in developing practical ViT models with small fine-tuning datasets. Notwith-
standing, we note that the amount of labeled data remains crucial for further
improvements.

3.2 Ablation study

Table 3 illustrates the ablation study with different training methods in order
to find the most optimal training ingredients for fine-tuning the pre-trained ViT
model in a low-data regime.

One important component for successful training is data augmentations,
which elevated the accuracy by up to 3.4%. However, we did not observe sig-
nificant improvements with regularization: including both stochastic drop path
and attention dropout improve the performance, meanwhile, dropout had an
apparent effect on the fine-tuning accuracy with the performance drop in both
datasets ADNI1 and ADNI2. With a similar observation, Steiner et al. [23] con-
cluded that regularization may hurt the performance as training data gets large.
In our case, ADNI1 originally includes more samples than ADNI2 (Table 1) and
had more performance drop, thus corroborating the conclusion.

Knowledge distillation through attention with a distillation token was an-
other subject of ablation. We employed a 3D Resnet-152 network from the
MONAI library as a teacher model. Similar to the above experimental setup,
this model was trained separately for each of the three seeds3. Our experimen-
tation, detailed in Table 3, first involved applying knowledge distillation to a
randomly initialized model. Later, we explored the effects of applying distil-
lation after the pre-training. Notably, pre-training yielded a performance boost
3 Teacher network has average accuracy of 84.63% and 82.51% for ADNI2 and ADNI1

respectively.
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Table 3. Ablation study on different training approaches for fine-tuning experiments.

Ablation ↓ Data
aug.

Drop
path

Attn
dropout Dropout Distill.

token ADNI1 ADNI2

None
(default) ✓ ✓ ✓ ✗ ✗ 79.6 ±0.82 81.9 ±2.17

Data
aug. ✗ ✓ ✓ ✗ ✗ 77.4 ±2.06 78.0 ±1.15

Regulari-
zation

✓ ✗ ✓ ✗ ✗ 78.9 ±1.44 81.4 ±1.44

✓ ✓ ✗ ✗ ✗ 78.2 ±0.90 80.7 ±2.33

✓ ✓ ✓ ✓ ✗ 78.7 ±1.07 80.0 ±1.69

Dist. w/o
pre-train. ✓ ✓ ✓ ✗ ✓ 67.7 ±0.62 69.8 ±2.52

Dist. with
pre-train. ✓ ✓ ✓ ✗ ✓ 79.7 ±1.19 82.0 ±1.37

compared to training from scratch and outperformed our model without distil-
lation by 0.1%. However, our findings indicate that the primary performance
improvement comes from the pre-training, showing its superiority as an effective
method of enhancing model performance. Additionally, the knowledge distilla-
tion training requires increased GPU memory resulting from the utilization of a
3D convolutional teacher model.

4 Conclusion

We investigated the optimal training for the Vision Transformer (ViT) model
in brain imaging, namely for Alzheimer’s disease classification, in a low-data
regime by leveraging various training strategies ranging from self-supervised
pre-training to selecting an optimal set of training methods, including data aug-
mentations, and regularizations. We demonstrated that pre-training immensely
contributes to the increase in fine-tuning accuracy, even when trained under ex-
treme low-data scenarios. We conducted all pre-training on the data unrelated
to the downstream application, showing the generalizability of pre-trained fea-
tures for fine-tuning disease classification. Additionally, while we showed that
pre-training data size remains critical, we also confirmed that it is not only
possible but also beneficial to combine different non-homogeneous datasets for
pre-training. Finally, we presented an optimal training recipe which is useful in
further boosting the fine-tuning accuracy with the ViT. We believe that this
work will contribute to the development of optimal models not only for brain
imaging but also for other medical imaging applications with limited data and
computational resources.

As for limitations, we note the use of a single pre-training method and evalu-
ation of a single task. Therefore we consider our future work to experiment with
contrastive learning-based pre-training methods and extend our evaluations on
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more tasks, such as for example classifying mild cognitive impairment. Our fu-
ture work will also continue with more exhaustive experiments on other Vision
Transformer architectures and training methods.
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