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Abstract. Surgical smoke in laparoscopic surgery can deteriorate the
visibility and pose hazards to surgeons, although medical devices for me-
chanical smoke evacuation worked well, its prolonged operative duration
and thus restricted the efficiency. This work aims to simultaneously re-
move the surgical smoke and restore the true-to-live image colors with
deep learning strategy to improve the surgical efficiency and safety. How-
ever, the deep network-based smoke removal remains a challenge due to:
1) higher frequency modes are hindered from being learned by spec-
tral bias, 2) the distribution of surgical smoke is non-homogeneity. We
propose the multi-frequency and smoke attention-aware learning-based
diffusion model for removing surgical smoke. In this work, the frequency
compensation strategy combines the multi-level frequency learning and
contrast enhancement to integrates comprehensive features for learning
mid-to-high frequency details that the smoke has obscured. The smoke
attention learning employs the pixel-wise measurement and provides
the diffusion model with complementary features about where smoke
is present, which helps restore the smokeless regions during the inverse
diffusion process. And the multi-task learning strategy incorporates L1

loss, smoke perception loss, dark channel prior loss, and contrast en-
hancement loss to help the model optimization. Additionally, a paired
smokeless/smoky dataset is simulated by a 3D smoke rendering engine.
The experimental results show that the proposed method outperforms
other state-of-the-art methods on both synthetic/real laparoscopic sur-
gical images, with the potential to be embedded in laparoscopic devices
for smoke removal.
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Fig. 1. Power spectral density (PSD) analysis on the predicted smoke-less image, smoke
image and non-smoke image. The first row shows the smoke image, the predicted
smoke-less image without/with multi-level frequency block (MFB), and the ground-
truth smoke-less image. The 2nd row shows their 2D Fourier trans-forms results. The
3rd row shows the log10(PSD) curves.

1 Introduction

During laparoscopic surgery, surgeons use high-frequency electric and ultrasonic
scalpels to cauterize human tissue for cutting operations, but this process gen-
erates surgical smoke [15]. As shown in Fig. 1, the surgical smoke can severely
reduce visibility in the abdominal cavity and pose a hazard to surgeons, hence
the urgent need to improve the quality of intraoperative images in clinical la-
paroscopic scenarios [21].

Traditional physical models such as: atmospheric scattering model (ASM)
based, dark channel prior (DCP) [8] indicated that by combining DCP and de-
hazing model, the thickness of haze can be directly estimated and high-quality
haze less images can be recovered. Surgery smoke is characterized by high vari-
ability and non-uniformity, deep learning-based algorithms, including generative
adversarial net-works (GANs) [11] and diffusion model [13] were studied for
smoke removal. [19] proposed an improved GAN structure and called SSIM-
PAN. [25] proposed DS-CycleGAN and it was constructed based on CycleGAN
for smoke removal. [24] proposed MPR-Net, this model first learned the contex-
tualized features using encoder-decoder architectures. [12] proposed CG-ASM
driven semi-supervised learning framework for high-quality pixel-wise laparo-
scopic image enhancement. [17] proposed CGAN-DC and it embedded the dark
channel into pix2pix. [16] proposed an end-to-end feature fusion attention net-
work (FFA-Net) to restore haze less images. [9] proposed a learning module
containing multi-level smoke features, and this module with a GAN network for
smoke removal and image generation. [3] proposed a novel computational frame-
work for unsupervised collaborative learning called De-smoke GCN. [5] proposed
Cycle-Dehaze for dehazing. [2] proposed a novel nonlinear activation function in
Dehaze-Net called Bilateral Rectified Linear Unit. However, the mode collapse
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of GANs might result in the loss of image details and introduce distortions [4,
22]. Diffusion model had recently emerged as an alternative to GANs and was
less prone to mode collapse [7].

We present the multi-frequency and smoke attention-aware learning-based
diffusion model for removing surgical smoke. A paired smokeless/smoky dataset
is simulated by a 3D smoke rendering engine. The main contributions of our
study are as follows: 1)The frequency compensation strategy combines the multi-
level frequency learning and contrast enhancement to integrate comprehensive
features for adaptively learning the higher frequency details that the surgical
smoke has obscured. 2)The smoke attention learning employs the pixel-wise mea-
surement and provides the diffusion model with additional information about
where smoke is present, which helps restore the smokeless regions during the in-
verse diffusion process. 3)The multi-task learning strategy incorporates L1 loss
DCP loss, smoke perception loss, and contrast enhancement loss to help the
model optimization.

2 Method

The de-smoking problem of laparoscopic image can be formulated as a transla-
tion from the smoky image domain to the smokeless image domain. Given the
input (Ismt , Islt , βt), where Islt (Isl0 denotes the smokeless image) is the noisy
image and Ismt (Ism0 denotes the smoky image) is the conditional image, and
βt is the noise variance. The noise can be iteratively mapped onto a sequence
of arbitrary images across T time steps, and the translation between the smoky
image domain to the smokeless image domain can be modeled by Gaussian dis-
tributions under large T and small βt.

During the translation, Isl0 can be gradually obtained from Ismt together with
Gaussian noise ϵt for t=T,. . . ,1 via the updating rule:

Islt−1 =
1

√
αt

(
Islt − 1− αt√

1− βt
fθ

(
Ismt , Islt , βt

))
+

√
1− αtϵt (1)

where ϵt ∼ N (0, I), αt controls the noise scale at each step t. fθ is the generative
model that is used to adjust the current noisy image Islt to obtain a smokeless
image Islt−1 with less noise at the next time step, and the inputs include the noisy
image Islt , the conditional image Ismt and the noise variance β. Islt and Ismt can
provide the context information.

2.1 Multilevel Frequency Learning

From the spatial domain, the image obscured by the smoke has smoother varia-
tions in chromaticity and brightness than that within the smokeless image. From
the frequency domain (Fig. 1), more mid-to-high frequencies existed within the
smokeless image, while the mid-to-high frequencies are found to be reduced in
the smoky images.
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Fig. 2. The architecture of the proposed model, it includes the multilevel frequency
learning block (MFB) and smoke attention learning block. Noise image Islt and condi-
tional image Ismt (the intersection of DCP maps, smoke masks and smoke image Ism)
are taken as inputs.

As shown in Fig. 2, fθ is a symmetric U-shaped encoder-decoder structure,
the detailed structure is shown in Appendix 1, the encoder consists of five con-
volutional blocks, given the feature map x ∈ RH×W×C of the last layer of each
convolutional block, x is then passed through multi-level frequency block (MFB),
which can emphasize the mid-to-high frequencies. MFB consists of three convo-
lutional weights Gσ

k×k that transfer the mid-to-high frequencies from the encoder
to the decoder via the skip connection. Gσ

k×k employs the Gaussian weights with
σ ∈ 1, 2, 4 and k ∈ 3, 5, 7:

xk = Gσ
k×k∗x (2)

where Gσ
k×k is set to be non-learnable to keep the determined bandwidth un-

changed. The mid-to-high frequencies are learned by subtracting the blurred
feature maps from each other or from the original one. x′ contains the mid-to-
high frequency by concatenating these subtractions:

x′ = [x, x− x3, x3 − x5, x5 − x7] (3)

Also, to allow the model adaptively to learn the relevant frequency bands, x′ is
aggregated via weighted averaging with learnable weights W = [w1, w2, w3, w4].
Meanwhile, to preserve its original signals, the identity mapping between x to
x′ is used, which is helpful during t → T .

x =< W,x′ > (4)

where x is learned from MFB and is then transferred to the decoder via the skip
connection. Furthermore, to prevent overfitting to artifacts during amplifying
the high-frequency components, Lce is introduced to balance the high-frequency
between Ĩsl and Isl.

Lce = abs

(
log

(
QISl

QĨSl

))
(5)

where QIsl denotes the ratio of σ2 to u, σ2 and u denote the variance and the
mean value of Isl intensity, respectively. For QĨsl

, the same principle applies.
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Typically, σ2 contributes significantly to its high-frequency, while u to the low-
frequency. When noises dominate (t → T ), u closes to 0 while σ2 closes to 1, Lce

tends to decrease. Conversely, when image details dominate (t → 1), it forces σ2

of Ĩsl to be consistent with that of Isl and avoiding being too large to result in
artifacts.

2.2 Smoke Attention Learning

Considering the non-homogeneity property of smoke, the smoke attention (SA)
learning is proposed to identify the areas within an image where surgical smoke
is present and to estimate the density of the smoke in these regions, and the
structure of SA network is shown in Appendix 2. Specifically, SA combines the
smoke segmentation network (SSN) with the dark channel prior (DCP) module.
SSN is a symmetric U-shaped network and it consists of encoder and decoder
parts, it consists of contracting path (encoder stage) and expansive path (decoder
stage). The encoder part of SSN is constructed based on the vanilla VGG16
network, except that the fully connected layers of VGG16 are removed, and the
decoder part is inversely identical to the encoder. Also, the convolutional block
attention module (CBAM) is introduced to enhance the perceptual ability of
decoder for better capturing the smoke feature. Moreover, the SSN is trained
independently before training the diffusion model.

For CBAM, both the channel and spatial attention is added after each group
of convolutional blocks to recalibrate the feature maps by focusing on important
features. Given the features map y, the channel attention Mc(y) and spatial
attention Ms(y) are computed as:

Mc(y) = Sigmoid
(
MLP

(
AvgPool(y)

)
+MLP

(
MaxPool(y)

))
(6)

Ms(y) = Sigmoid
(
Conv7∗7([AvgPool(y),MaxPool(y)])

)
(7)

y′ = Mc ⊙ (Mc ⊙ y) (8)

where Conv7∗7 represents a convolution operation with kernel size of 7∗7, [ , ]
denotes the concatenation of the feature maps, ⊙ denotes element-wise multipli-
cation. And the refined feature map y′ is obtained by applying the channel and
spatial attention maps to the input feature map y.

The DCP module works jointly with SSN to enhance the smoke attention.
The DCP covered by smoke has larger values than the dark channel without
smoke, and the DCP tends to increase in the regions covered by smoke and
decrease in the smokeless regions. Hence, DCP is sensitive to smoke images, and
the combination of SSN and DCP can encode comprehensive smoke features to
adaptively accommodate the complicated smoke.

2.3 Multi-task Learning

To adaptively optimize pixels in the smoke regions and prevent color distortion
in the smokeless regions. The smoke perception is used to penalize the smoke
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pixels and thus compensating the challenge of uneven smoke distribution. The
smoke perception loss Lsp is defined as:

Lsp =
1

N

[
α1

∑
x/∈S

Id(x) +
∑
x∈S

IsaId(x)

]
(9)

Id(x) = |Isl(x)− Ĩsl(x)| (10)

where Ĩsl and Isl denote the synthetic smokeless image and the ground truth
smokeless image. N denotes the total number of image pixels, S denotes the
smoke attention, and x denotes the pixel index of the image. The penalty weight
α1 for smokeless region is empirically set to 0.2 to prevent large color distortion,
and the attention penalty coefficient Isa is restricted to [0.5,1].

To further improve the smoke removal, the DCP loss is introduced Ldcp is
introduced and it forces the discriminators to take most of the smoke-covered
pixels into account and facilitate the optimization of the generators. Ldcp is
defined as:

Ldcp =
1

N

∑
x

[DCP (Isl)−DCP (Ĩsl)] (11)

where DCP denotes the dark channel operation and N denotes the total number
of image pixels. Herein, Ldcp is measured using its average value by cyclically
traversing all pixels of the image, and it can capture the edges and contours of
the smoke image, thereby preserving more detailed information.

To better capture the characteristics of the smoke and reduce the risk of
overfitting, L1 is defined as:

L1 =
∥∥fθ(Ismt , Islt , βt

)
− ε
∥∥1
1

(12)

The multi-task objective function consists of smoke perception loss, DCP
loss, and contrast enhancement loss, L1 loss and thus the total loss L can be
defined as:

L = L1 + λ1Lsp + λ2Ldcp + λ3Lce (13)

For optimization, we empirically set λ1=0.8, λ2=0.4 and λ3=0.2. Also, the
performance comparison for parameter choice is shown in Appendix 4.

3 Experiment and Results

3.1 Datasets

In clinical practice, a paired smokeless/smoky laparoscopic surgical image can
hardly be obtained. To compensate for this issue, the Blender [1] is used for
smoke rendering to synthesize smoky images from its paired smokeless images.
In this case, the real laparoscopic surgery dataset comes from both the Cholec80
dataset [20] and a real-world dataset collected from the Second Hospital of Shan-
dong University.
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Table 1. Quantitative comparison results of the proposed model with 10 other methods
on a synthetic surgical dataset. The bold denotes best results.

Method PSNR [10] SSIM [18] CIEDE-2000 [6]
SSIM-PAN [19] 23.358±1.684 0.846±0.050 6.856±2.720

DS-CycleGAN [25] 26.533±1.923 0.872±0.086 5.262±2.305
De-smoke GCN [3] 26.979±1.425 0.899±0.046 4.726±3.256

CG-ASM [12] 26.793±1.477 0.873±0.096 5.750±2.761
CGAN-DC [17] 26.640±1.381 0.879±0.037 5.848±2.478
MARS-GAN [9] 27.821±1.826 0.918±0.024 4.055±1.855
MPR-Net [24] 26.712±1.809 0.901±0.025 4.883±2.141
FFA-Net [16] 22.793±2.142 0.851±0.084 6.641±1.742

Cycle-Dehaze [5] 25.429±1.764 0.887±0.048 8.320±2.248
DCP [8] 15.747±1.380 0.728±0.045 12.451±4.520
Ours 28.314±1.921 0.929±0.032 3.994±1.901

3.2 Evaluation and Results

Synthetic smoke dataset As shown in Table 1, comparing to other methods,
the proposed model achieves the best results in the three metrics, PSNR, SSIM,
and CIEDE-2000. Comparing to the de-smoking model, the proposed model
improves over De-smoke GCN by an aver-age of 1.335, 0.030 in the PSNR and
SSIM, and decreases by an average of 0.732 in the CIEDE-2000. Comparing to
the de-hazing model, the proposed improves over MPR-Net by an average of
1.602, 0.028 in the PSNR and SSIM, and decreases by an average of 0.889 in the
CIEDE-2000. Comparing to MARS-GAN (the 2nd best method), the proposed
improves by an average of 0.493, 0.011 in the PSNR and SSIM and decreases by
an average of 0.061 in the CIEDE-2000.

Real smoke dataset The proposed model achieves the best results with the
BRISQUE [14], FADE [14], and CEIQ [23] metrics (Appendix 5). Comparing to
the de-smoking model, the proposed model improves over De-smoke GCN by an
average of 0.238 in the CEIQ, and decreases by an average of 2.666, 0.069 in the
BRISQUE and FADE. Comparing to the de-hazing model, the proposed model
improves over MPR-Net by an average of 0.318 in the CEIQ, and decreases by an
average of 2.874, 0.080 in the BRISQUE and FADE. Comparing to MARS-GAN
(the 2nd best method), the proposed model improves over MARS-GAN by an
average of 0.015 in the CEIQ, and decreases by an average of 1.441, 0.002 in the
BRISQUE and FADE.

3.3 Qualitative Results

As shown in Fig. 3, comparing to other models on the same real laparoscopic
smoke dataset. Serious color distortion exists and the abdominal cavity is over-
saturated using DCP and FFA-Net. The portion of the surface of the atraumatic
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Fig. 3. The comparison of the proposed model with the comparative models originally
used for de-smoking and de-hazing on the real laparoscopic surgical image dataset, and
some randomly selected subjects are shown.

separation forceps seems to be eroded using Cycle-Dehaze. The smoke is not re-
moved by MPR-Net, and the images get blurred. The images are prone to smooth
and darkening using DS-CycleGAN and CG-ASM. And the de-smoking effect is
not obvious using SSIM-PAN, De-smoke GCN, CGAN-DC, and MARS-GAN.

For Cholec80 dataset, the de-smoking of Cholec80 is shown in Appendix 3,
which shows that the proposed model removes the smoke, as well as restores the
true-to-life color. The images obtained from DS-CycleGAN look yellowish tint
color, Cycle-Dehaze, DCP cause color discoloration and distortion, especially
the images obtained from DCP get too dark. And De-smoke GCN, CG-ASM,
CGAN-DC, MARS-GAN and MPR-Net do not well remove the smoke, SSIM-
PAN and FFA-Net cause the luminance distortion.

4 Conclusion

In this study, we propose the multi-frequency and smoke attention-aware learning
based diffusion model for removing surgical smoke. It incorporates the multilevel
smoke attention-aware learning, multilevel frequency learning and multi-task
learning into together, and the paired smokeless/smoky images are synthesized
for model training. The qualitative and quantitative evaluation show that the
proposed model achieves remarkable de-smoking performance and outperforms
10 compared models, and this has the potential to assist surgeons for efficient
surgical smoke removal.
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