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Abstract. Advantages of cine-MRI include high spatial-temporal resolution and 
free radiation, and the technique has become a new method for analyzing and 
assessing the swallowing function of patients with head and neck tumors. To re-
duce the labor work of physicians and improve the robustness of labeling the 
cine-MRI images, we propose a new swallowing analysis method based on a re-
vised cine-MRI segmentation model. This method aims to automate the calcula-
tion of tongue dorsum motion parameters in the oral and pharyngeal phases of 
swallowing, followed by a quantitative analysis. Firstly, based on manually an-
notated swallowing structures, we propose a method for calculating tongue dor-
sum motion parameters, which enables the quantitative analysis of swallowing 
capability. Secondly, a spatial-temporal hybrid model composed of convolution 
and temporal transformer is proposed to extract the tongue dorsum mask se-
quence from a swallowing cycle MRI sequence. Finally, to fully exploit the ad-
vantages of cine-MRI, a Multi-head Temporal Self-Attention (MTSA) mecha-
nism is introduced, which establishes connections among frames and enhances 
the segmentation results of individual frames. A Temporal Relative Positional 
Encoding (TRPE) is designed to incorporate the temporal information of differ-
ent swallowing stages into the network, which enhances the network’s under-
standing of the swallowing process. Experimental results show that the proposed 
segmentation model achieves a 1.45% improvement in Dice Score compared to 
the state-of-the-art methods, and the interclass correlation coefficient (ICC) of 
the displacement data of swallowing feature points obtained respectively from 
the model mask and physician annotation exceeds 90%. Our code is available at: 
https://github.com/MinghaoSam/SwallowingFunctionAnalysis. 

Keywords: Swallowing function, Quantitative analysis, Cine-MRI, Head and 
neck tumor, Temporal attention. 

1 Introduction 

The rapid rise in the incidence of tongue cancer is a significant contributor to mortality 
in oral cancer. Various treatments can lead to different degrees of swallowing abnor-
malities [1]. Postoperative dysphagia occurs in approximately 40-60% of cases [2] and 
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is a common sequela in tongue cancer patients, greatly affecting their quality of living 
[3]. Despite increasing attention to postoperative dysphagia, there is a lack of research 
on the mechanism of dysphagia [4]. 

Videofluoroscopic swallowing study (VFSS) is the most commonly used method for 
assessing swallowing capacity and is considered the gold standard tool for diagnosing 
swallowing disorders [5]. However, VFSS carries the risk of radiation exposure and 
cannot be frequently used. Additionally, due to incomplete visualization in the coronal 
plane, VFSS cannot provide comprehensive information on swallowing movements. 
Cine-magnetic resonance imaging (MRI), with its non-invasive, radiation-free, con-
trast-agent-free, and high temporal and spatial resolution characteristics, has become 
an increasingly adopted paradigm for evaluating swallowing capacity. During the swal-
lowing process, cine-MRI continuously acquires multiple frames of images, visualizing 
the dynamic structures of the oral cavity and pharynx. However, previous studies uti-
lizing cine-MRI to investigate swallowing-related structures have primarily relied on 
qualitative description [6, 7], semi-quantitative analysis[8–10], and quantitative analy-
sis of local anatomical landmarks[11–13]. There is still a lack of quantitative research 
focusing on the motion trajectories of swallowing-related structures. 

Additionally, the aforementioned quantitative analysis methods largely depend on 
manual annotations of the swallowing structures and personal calculations of swallow-
ing parameters based on anatomical landmarks with experts’ experience. This process 
is time-consuming and labor-intensive. Due to the complexity of the organs and limi-
tations in the annotator’s experience, there are drawbacks including subjectivity and 
susceptibility to errors. 

Previously, deformable registration-based methods were used for swallowing mo-
tion estimation. For instance, Yang et al.[14] studied the characteristics of tongue root 
during swallowing with an improved deformable registration algorithm to track its mo-
tion in four directions with deformation vectors. However, local tongue root movement 
in these few directions cannot fully reflect the entire tongue motion.  

In this study, to address the limitations of previous quantitative analyses based on 
cine-MRI, in Section 2, we propose a method for automatically extracting ten feature 
points on the tongue dorsum and computing their motion parameters based on physi-
cian-annotated MRI swallowing sequences. This method can estimate parameters in-
volving displacement, velocity, and acceleration for each feature point, which are used 
later for quantitative analysis of swallowing function, and its accuracy depends solely 
on the ROI (tongue dorsum) precision, eliminating further manual intervention. Sec-
ondly, to alleviate the burden of physician annotation and mitigate the inconsistency 
among annotators, we propose a spatial-temporal hybrid tongue dorsum segmentation 
model. In this model, convolution is utilized to extract spatial features, while the tem-
poral self-attention mechanism to extract temporal features. Moreover, to explore the 
characteristics of different swallowing phases, we design a temporal relative positional 
encoding in the temporal transformer, encouraging the model to learn the temporal pat-
terns of the swallowing cycle. Section 3 presents the numerical experiments of our pro-
posed method, and Section 4 is the conclusion part. 
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2 Methodology 

2.1 Tongue Dorsum Motion Computation Method 

The method for obtaining tongue dorsum motion parameters is based on morphological 
and geometric techniques, extracting feature points from multiple frames of annotated 
images, and calculating the motion parameters of each feature point. The detailed pro-
cess is illustrated in Fig. 1. 

 
Fig. 1. Illustration of tongue dorsum motion computation method, including (a) the annotated 
image composes of the tongue dorsum and the registered coordinate axes, (b) the tongue dor-

sum mask with the endpoints of the tip and the base of the tongue, (c) the intersection between 
rays and the tongue dorsum contour, and (d) the extracted tongue dorsum feature points. 

This tongue motion computation method can be divided into four steps as follows. 
(1) We establish a Cartesian coordinate system for frame alignment from i to iv. (i) 
Considering the mandible as the primary support structure for tongue motion [11], we 
set the lower margin of the attachment point of the genioglossus muscle to the inner 
side of the mandible as the origin. (ii) The X-axis is defined by the second cervical 
intervertebral disc due to its fixed position, hence establishing the coordinate system. 
(iii) We then mark the upper border of the tongue dorsum with integrity and accuracy. 
(iv) A set of rays is then constructed with the origin as the common starting point. The 
first and last rays pass through the tip and base of the annotated tongue dorsum, respec-
tively, ensuring that the angles between adjacent rays are equal. (2) The pixel coordi-
nates of the overlap between each ray and the tongue dorsum contour are recorded, and 
the average coordinates of the overlap pixel belonging to each ray are calculated to 
obtain the coordinates of the feature points on the tongue dorsum. (3) A spatial trans-
formation is applied to these feature point coordinates to obtain affined coordinates by 
mapping the pixel coordinates to the registered coordinates system. (4) During one 
swallowing cycle, the coordinates of ten feature points are extracted from 8 frames of 
MRI images. The displacement of each feature point is calculated by analyzing the co-
ordinate changes between each pair of adjacent time steps. Subsequently, seven veloc-
ity values and six acceleration values are computed based on the displacement data. 

2.2 Network Architecture 

Medical image segmentation methods mainly focus on improving spatial feature ex-
traction ability. For the cine-MRI data, the temporal corrections between multiple 

（a） （b） （c） （d）
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frames are not fully utilized in previous literatures. Therefore, we hypothesize the ex-
istence of correlations among multiple frames of images within a swallowing cycle and 
will introduce it into the neural network. During the oral and pharyngeal phases of 
swallowing, the predominant movement involves the tongue dorsum and its surround-
ing structures, with minimal movement observed in other regions. Moreover, there is a 
coherent trajectory in the movement of the tongue dorsum and its surrounding struc-
tures across multiple frames. By integrating features from multiple frames, we can en-
hance the segmentation results of individual frames. Therefore, we propose the Convo-
lution and Temporal Transformer Hybrid Network (CTTH-Net) for tongue dorsum seg-
mentation. Fig. 2 illustrates an overview of our CTTH-Net architecture. 

 
Fig. 2. An overview of the proposed tongue dorsum segmentation model. (a) The Convolution 
and Temporal Transformer Hybrid Network (CTTH-Net), (b) the data flow of the Temporal 

Transformer Block (TTB), (c) the architecture of the transformer block inside the TTB, and (d) 
the proposed temporal attention. 

Temporal Transformer Block (TTB). The data flow of TTB is shown in Fig. 2b. We 
first perform tokenization [15] by reshaping the features into sequences of flattened 2D 
patches with patch sizes of 16 and 8 in stages 1 and 2, respectively, so that the patches 
can be mapped to the same areas of the encoder features. The tokenization is involved 
with convolution and spatial position encoding, and permute operation is performed 
making tokens 𝑇 ∈ ℝ𝑛𝑝𝑎𝑡𝑐ℎ𝑒𝑠×𝑛𝑓𝑟𝑎𝑚𝑒𝑠×𝐶𝑖 , where 𝐶𝑖(𝑖 = 1,2) denotes channel dimen-
sions of stage 𝑖, in our implementation 𝐶1 = 64, 𝐶2 = 128. The tokens are then fed into 
the temporal transformer block, where the operations within the block are repeated four 
times. Each operation involves a Multi-head Temporal Self-Attention module (MTSA) 
with Temporal Relative Positional Encoding (TRPE), followed by a Multi-layer 
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Perceptron (MLP) with residual structure[16], as shown in Fig. 2c. The MTSA is 
guided by the following formula: 

 𝐻𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖) = softmax (
𝑄𝑖𝐾𝑖

𝑇

√𝑑𝑘
+ 𝐵)𝑉𝑖 , (1) 

where 𝐻𝑖  represents the output of head 𝑖 ∈ [𝑁ℎ], 𝑄𝑖 = 𝑇𝑊𝑖
𝑄, 𝐾𝑖 = 𝑇𝑊𝑖

𝐾, 𝑉𝑖 = 𝑇𝑊𝑖
𝑉, 𝑇 

for the input tokens. 𝑊𝑖
𝑄, 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉 are trained for each head, and 𝑑𝑘 for the dimension 

of each head, 𝐵 for temporal relative position bias. We set 𝑁ℎ = 4 in implementation. 
The major difference of MTSA with respect to the original self-attention [17] is that 

we conduct the attention operation along the temporal axis (batch axis) rather than the 
patch-axis, which is shown in Fig. 2 (d). In a N-head attention situation [18], the output 
after MTSA is calculated by: 

 MTSA = Concat
𝑖∈𝑁ℎ

[𝐻𝑖]𝑊𝑂 , (2) 

where 𝑊𝑂 is an extra parameter matrix that projects the concatenation of the 𝑁ℎ head 
outputs to the output space. Hereinafter, applying a MLP and residual operators, the 
output can be obtained by: 

 TTrans = MTSA + MLP(LN(𝑇 + MTSA)), (3) 

where LN represents the layer normalization operation, and TTrans for the output of 
the temporal transformer block. 

Spatial-temporal Fusion. The fusion process is implemented using 1×1 convolution. 
Initially, the feature maps obtained from the convolutional layers and temporal trans-
former are concatenated along the channel dimension. Subsequently, they undergo di-
mension reduction through 1×1 convolution to obtain feature maps with the same 
shape as the input of the fusion. This is followed by batch normalization and application 
of the GELU activation function. 

2.3 Temporal Relative Positional Encoding (TRPE) 

Unlike CNNs, Transformer models lack an inherent understanding of positional infor-
mation, thus requiring the introduction of positional encoding [19]. Conventional meth-
ods for positional encoding include absolute positional encoding and trainable posi-
tional encoding. However, these approaches are not suitable for swallow-related cine-
MRI data, which exhibit continuous temporal correlations. Therefore, we propose a 
temporal encoding technique with relative positions. Similar to the concept of Markov 
chains, temporal relative positional encoding enables the transformer to better capture 
the temporal relationships among frames within a swallowing cycle. 
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Fig. 3. The temporal relative positional encoding. 

A swallowing cycle of 8 frames is mapped to 8 tokens, where each token 𝑡 ∈ ℝ𝑃×𝐶 
(refer to Fig. 3a), with 𝑃 and 𝐶 denoting the number of patches and channels, respec-
tively. During the temporal transformer process, the attention score is denoted by 
𝑄𝐾𝑇 ∈ ℝ𝑃×𝐹×𝐹, where 𝐹 represents the number of frames. Therefore, we introduce the 
position bias matrix 𝐵 ∈ ℝ𝐹×𝐹 (refer to Fig. 3b), and its elementary values are derived 
from the temporal encoding table (see Fig. 3c). In this table, temporal relative positions 
are represented as 𝐵̂ ∈ ℝ2𝐹−1. The overall operation can be formulated as follows: 

 𝑏𝑖𝑗 = BiasMatrix[𝑖, 𝑗] = EncodingTable[𝑖 − 𝑗]. (4) 

3 Experiments 

3.1 Image Acquisition and Dataset 

Each swallowing cycle involves the acquisition of 8 MRI images. Initially, cine-MRI 
images of swallowing were obtained from 9 individuals, comprising 5 healthy subjects 
and 4 subjects with post-reconstruction surgery. Among them, 3 individuals underwent 
4 swallowing cycles, 1 individual underwent 5 cycles, and 5 individuals underwent 3 
cycles, resulting in a total of 32 swallowing cycles and 256 captured images. 

The dataset is divided into four parts: (1-2) For participants with 4 and 5 collected 
swallowing cycles, they are grouped into training, validation, and testing sets by the 
ratios of 2:1:1 and 3:1:1, respectively, on a per-swallowing-cycle basis. (3) For partic-
ipants with only three collected swallowing cycles, data from two participants are 
grouped into training, validation, and testing sets by a ratio of 1:1:1 on a per-swallow-
ing-cycle basis. (4) For the remaining three participants, their data are grouped and then 
split into training, validation, and testing sets by a ratio of 1:1:1 for each participant. 

3.2 Implementation Details and Evaluation Metrics 

The segmentation model is implemented with Pytorch 2.0.1 using an NVIDIA RTX 
3090 GPU. We train the target model for 300 epochs with a batch size of 8 (8 frames 
of cine-MRI in one swallowing cycle). Adam optimizer is adopted with the learning 
rate equal to 0.001. To prevent overfitting, we used L2 regularization and set the weight 
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attenuation to 0.001. We adopt a weight binary cross-entropy (BCE) and Dice loss 
functions, with both weights set to 0.5.  

We chose the Dice score and mean intersection over union (mIoU) to evaluate the 
performance of this method in the tongue dorsum segmentation task. During training, 
an early stopping strategy is implemented, where training will be stopped if the Dice 
score fails to exceed the current best model's Dice score for over 100 epochs. 

3.3 Comparison with State-of-the-Arts and Ablation Study 

We compare our model to several medical image segmentation models, including U-
Net [20], ACC-UNet [21], UCTransNet [22] and DSCNet [23]. UCTransNet leverages 
multi-scale channel-wise cross-attention to mitigate the semantic gap across different 
stages of the encoder, achieving state-of-the-art performance on multiple publicly avail-
able medical image datasets. DSCNet is specifically designed to capture topological 
tubular structures such as blood vessels and roads. Therefore, its dynamic snake con-
volution can adaptively focus on slender and tortuous local structures, making it intui-
tively suitable for tongue dorsum segmentation tasks. During training and testing, the 
batch size for all models is set to 8, representing eight cine-MRI images of a single 
swallowing cycle. Comparisons of evaluation metrics of different models are presented 
in Table 1. 

As presented in the bottom rows of Table 1, our model outperforms the second-
ranked model, DSCNet, by 1.45% in terms of Dice score and surpasses the second-
ranked model, UCTransNet, by 1.29% in terms of mIoU, achieving the best perfor-
mance. Regarding model efficiency, it is noteworthy that our model maintains compa-
rable parameter and FLOPs counts to the baseline U-Net while achieving superior seg-
mentation performance. The ablation study demonstrates that the inclusion of TTB in 
the baseline model resulted in a 0.9% and 0.2% improvement in Dice score and mIoU, 
respectively. Subsequently, the addition of TRPE leads to a further 1.41% and 1.33% 
in Dice score and mIoU, respectively. 

Table 1. Comparisons of different models, where (w/o) and (w) represent models without and 
with TRPE, respectively. FLOPs are tested with batch size of 8. 

Model Params(M) FLOPs(T) Dice mIoU 
U-Net (baseline) 14.751 0.393 62.91 47.84 

ACC-UNet 16.771 0.708 59.93 44.10 
UCTransNet 63.096 0.953 63.73 48.08 

DSCNet 23.924 1.613 63.77 47.98 
Ours (w/o) 14.845 0.414 63.81 48.04 
Ours (w) 14.845 0.414 65.22 49.37 

3.4 Results 

Fig. 4 illustrates the segmentation results of different models for tongue dorsum. It can 
be observed that our method outperforms other models in extracting tongue dorsum 
masks. Benefitted from the application of TTB and TRPE, long-range temporal 
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dependencies between frames are established, enhancing the segmentation performance 
of individual frames, thus preserving target structures and better continuity. 

 
Fig. 4. Output comparisons of different models. In the outputs of U-Net and UCTransNet, in-

complete segments are observed in the tongue dorsum structure. Compared to other models, the 
segmentation accuracy of ACC-UNet is unsatisfactory. Although DSCNet demonstrates im-
proved continuity in the tongue dorsum predictions, it is susceptible to intensity interference 

from liquid during later stages of swallowing. Leveraging the temporal transformer, our model 
establishes correlations between multiple frames, resulting in superior segmentation integrity. 

 
Fig. 5. Displacements of feature points in one swallowing cycle, calculated from (a) physician’s 

annotations, and (b) our model-generated masks. 

In our study, intraclass correlation coefficient (ICC) [24] was employed to evaluate 
the consistency between displacement data calculated from the masks extracted from 
physician’s annotation (refer to Fig. 5a) and the masks generated by our model (refer 
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to Fig. 5b). The ICC results exceeded 90%, indicating the effectiveness and accuracy 
of our approach in capturing the tongue dorsum motion.  

4 Conclusion 

This study introduces a novel swallowing analysis method based on a tongue dorsum 
segmentation neural network. Firstly, we propose a method for calculating tongue dor-
sum motion parameters from tongue dorsum masks for quantitative analysis. Secondly, 
we present a tongue dorsum segmentation model with temporal transformer. Experi-
mental results demonstrate the robustness and effectiveness of the model's segmenta-
tion ability, and the motion parameters calculated from model extracted masks demon-
strate the consistency with those obtained from physician annotation. Future work will 
focus on further refining the model and exploring its application to other planes of 
swallowing-related cine-MRI. 
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