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Abstract. Using functional Magnetic Resonance Imaging (fMRI) to
construct the functional connectivity is a well-established paradigm for
deep learning-based brain analysis. Recently, benefiting from the remark-
able effectiveness and generalization brought by large-scale multi-modal
pre-training data, Vision-Language (V-L) models have achieved excel-
lent performance in numerous medical tasks. However, applying the pre-
trained V-L model to brain analysis presents two significant challenges:
(1) The lack of paired fMRI-text data; (2) The construction of func-
tional connectivity from multi-modal data. To tackle these challenges,
we propose a fMRI-Text Synergistic Prompt Learning (fTSPL) pipeline,
which utilizes the pre-trained V-L model to enhance brain analysis for
the first time. In fTSPL, we first propose an Activation-driven Brain-
region Text Generation (ABTG) scheme that can automatically gener-
ate instance-level texts describing each fMRI, and then leverage the V-L
model to learn multi-modal fMRI and text representations. We also pro-
pose a Prompt-boosted Multi-modal Functional Connectivity Construc-
tion (PMFCC) scheme by establishing the correlations between fMRI-
text representations and brain-region embeddings. This scheme serves as
a plug-and-play preliminary that can connect with various Graph Neu-
ral Networks (GNNs) for brain analysis. Experiments on ABIDE and
HCP datasets demonstrate that our pipeline outperforms state-of-the-
art methods on brain classification and prediction tasks. The code is
available at https://github.com/CUHK-AIM-Group/fTSPL.

Keywords: Prompt learning · Vision-language model · Multi-modal
functional connectivity · Brain analysis.

1 Introduction

At the neuroscience fronts, brain functional Magnetic Resonance Imaging (fMRI)
[16] is a key technology for revealing human behaviors and cognitions. Concretely,
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Fig. 1. Illustration of the proposed fTSPL pipeline. (a) Existing methods directly pro-
duce the functional connectivity and then use GNNs for brain analysis. (b) Our fTSPL
utilizes the pre-trained V-L model with multi-modal prompts to construct the multi-
modal functional connectivity, thereby enhancing GNN-based brain analysis.

fMRI produces functional connectivity [5,20] that describing the communication
and collaboration patterns between brain regions in different behaviors and cog-
nitions. Therefore, many studies [4,21] focus on analyzing functional connectiv-
ities for multiple brain disease classification and cognitive prediction tasks.

With the interdisciplinarity between artificial intelligence and neuroscience,
deep learning methods are widely applied to assist in brain analysis [6,12,15,25,
29]. As shown in Fig. 1(a), a well-established paradigm is constructing graph-
structured functional connectivity, followed by connecting a Graph Neural Net-
work (GNN) to classify brain diseases or predict brain cognitions. However,
most existing GNNs are tailored for uni-modal fMRI data, which limits their
effectiveness since recent works [13, 27, 30] have shown that incorporating text
modality can provide additional supervision to improve performance. Currently,
the pre-trained Vision-Language (V-L) models [10, 18] have attracted extensive
attention as they utilize a self-supervised manner to learn numerous generic and
effective multi-modal representations from large-scale pre-training data. In the
medical field, V-L models have also been explored in various tasks and have
yielded promising results [24, 26, 28]. Inspired by this, we aim to introduce the
pre-trained V-L model for constructing multi-modal functional connectivity, thus
improving the performance of multiple brain analysis tasks. To be noted, we rep-
resent the first effort to leverage the V-L model for multi-modal brain analysis.

Nevertheless, there are two major challenges to applying the V-L model for
multi-modal brain analysis: (1) Current fMRI data lacks the corresponding texts.
Meaningful texts describing brain-region connectivities and activities could pro-
vide the extra text-modal supervision to learn more effective fMRI representa-
tions. Therefore, it is highly demanded for generating instance-level fMRI-text
data; (2) Existing functional connectivity construction methods only consider
uni-modal fMRI data. We aim to further explore the relations between high-level
fMRI, text, and brain-region features to construct the multi-modal functional
connectivity and improve the performance of brain analysis.
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Aiming to address the above challenges, we propose a fMRI-Text Synergistic
Prompt Learning (fTSPL) pipeline for multi-modal brain analysis, which com-
prises two main components: (1) Activation-driven Brain-region Text Generation
(ABTG); (2) Prompt-boosted Multi-modal Functional Connectivity Construc-
tion (PMFCC). In ABTG, we screen the activated brain regions according to
fMRI intensities, and quantify the activation degree of brain regions using func-
tional connectivity. This scheme allows us to obtain the text description of each
fMRI and enables the use of the V-L model. In PMFCC, we tune the pre-trained
V-L model via multi-modal prompts to produce fMRI and text representations,
and then construct the multi-modal functional connectivity by establishing the
correlations between fMRI-text representations and brain-region embeddings.
Experimental results demonstrate that the proposed pipeline achieves excellent
performance on multiple brain analysis tasks. The main contributions are as
follows: (1) We propose a novel prompt learning paradigm fTSPL. To the best
of our knowledge, this is the first application of the V-L model for multi-modal
brain analysis; (2) We propose ABTG to provide instance-level text descriptions
for fMRI, which is suitable for fMRI with different brain atlas; (3) We propose
PMFCC to construct the multi-modal functional connectivity, it is a plug-and-
play preliminary for GNN-based brain analysis. Experiments on brain disease
classification and cognitive prediction verified the effectiveness of PMFCC.

2 Method

In Fig. 2, we display the overall architecture of the proposed fTSPL pipeline.
Firstly, given the pre-processed fMRI time-series {Xn}Nn=1, we use the ABTG
scheme to generate fMRI’s text descriptions {Yn}Nn=1 according to the connec-
tivity and activity of brain regions. The fMRI time-series and brain-region text
{Xn, Yn} are denoted as the multi-modal input for BiomedCLIP [24] text and im-
age encoders. Afterward, we design learnable multi-layer text and image prompts
{PT

k }Kk=1 and {P I
k }Kk=1, where K is the prompt depth. The text and image en-

coders ET and EI are kept frozen, while only multi-modal prompts are optimized
to produce fMRI and text representations x and y. Next, we propose the PM-
FCC scheme to enhance the original functional connectivity by supplementing
the fMRI and text-modal connectome information. The constructed multi-modal
functional connectivity Fm can connect different GNNs as adapters to improve
multiple brain analysis tasks. During the training, the contrastive loss Lcon and
task loss Ltask jointly achieve the optimization of our pipeline.

2.1 Activation-driven Brain-region Text Generation (ABTG)

In fMRI time-series, each brain region corresponds to an independent medi-
cal terminology, and the connectivity and activity of brain regions are crucial
for neuroscientists to achieve brain analysis. Motivated by this, we propose the
ABTG scheme, which counts the activated brain regions of each fMRI as well as
the corresponding activation degrees to provide instance-level brain-region texts.
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Fig. 2. Overview of the proposed fTSPL pipeline. fTSPL first generates the brain-
region text for each fMRI time-series to form instance-level multi-modal data. Then,
fTSPL tunes the pre-trained V-L model by optimizing multi-modal prompts to produce
fMRI and text representations. Finally, fTSPL correlates the fMRI-text representations
and brain-region embeddings to construct the multi-modal functional connectivity, and
connects a learnable GNN adapter for enhancing brain analysis.

Firstly, we map original fMRI data into the grayordinate system [7] to ob-
tain vertices on the reconstructed cortical surface, and then perform the within-
subject and cross-subject registrations to establish the subject-level correspon-
dence. Taking Automated Anatomical Labeling (AAL) [19] as an example, we
apply the pre-defined AAL atlas to cortical surfaces, which can produce 45 re-
gions on left and right cerebral hemisphere and 26 regions on the cerebellum. At
each fMRI timestamp, the vertices in each brain region are averaged to produce
the fMRI time-series X ∈ RM×S , where M is the number of brain regions, and S
is the number of timestamps. To obtain the activation state and degree of each
region, we first introduce an activation threshold Ha, which aims to extract the
activated brain region in X at each timestamp. Ha is positively correlated with
the maximum activity of fMRI time-series, i.e., Ha = λ ·max(X). We define an
activated brain region if its value exceeds Ha more than S/20 times:

The m−th brain region is


activated, if

S∑
s=1

1(Xm,s > Ha) ≥ S
20

non−activated, if
S∑

s=1
1(Xm,s > Ha) <

S
20

. (1)

Then, we define a correlation threshold Hc to evaluate the activation degree
of brain regions. Concretely, Pearson correlations between brain regions are com-
puted to construct a 116 × 116 functional connectivity. Here, we consider two
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regions to be correlated when their correlation value is greater than 0.5. On this
basis, we further define the “strong”, “moderate”, or “weak” region as the one
with M1, M2, or M3 correlated regions, where M1 > 3Hc, Hc ≤ M2 ≤ 3Hc, and
M3 < Hc. Finally, we describe the above brain regions to generate the instance-
level brain-region text. To be specific, the activated brain regions are matched
with the corresponding brain atlas terminologies, and further combined with
their activation degree words “strong”, “moderate”, and “weak”.

2.2 Prompt-boosted Multi-modal Functional Connectivity
Construction (PMFCC)

To enhance the original functional connectivity, we combine the pre-trained V-L
model and multi-modal prompt learning to construct the multi-modal functional
connectivity, which theoretically contributes to improve the performance of mul-
tiple brain analysis tasks.

Multi-modal Text-Image Prompting: In this work, multi-modal prompt
learning is achieved by synergizing multi-layer text prompts {PT

k }Kk=1 with im-
age prompts {P I

k }Kk=1. Given a brain-region text Yn, we first adopt a Tokenizer
embedding layer to convert Yn into the word embedding W0 ∈ RB×CT

, where
B and CT are the number and channels of word embeddings. Then, we take
the current layer text prompt PT

0 ∈ RD×CT

, where D is the prompt length, to
combine with W0 as inputs for the text encoder ET . For the j-th Transformer
layer, we define the prompting process as:

[Wj , ] = ET,j(Wj−1, P
T
j ), j ≤ K, (2)

when j ≤ K, we will discard the prompt output of the current layer, and add a
new text prompt in the next Transformer layer for learning.

Finally, we introduce a linear layer to project the last word token wB
J from

WJ into a common latent space, obtaining the text representation y:

y = TextProj(wB
J ), y ∈ RC . (3)

As the fMRI time-series Xn has been pre-processed according to AAL atlas,
we remove the image patching step and add a linear layer to convert Xn ∈
RM×S into the image embedding V0 ∈ RM×CI

, where CI is the channels of
image embeddings. Meanwhile, we add the class token c0 and image prompt
P I
0 ∈ RD×CI

into V0 to feed the image encoder EI :

[cj , Vj , ] = EI,j(cj−1, Vj−1, P
I
j ), j ≤ K. (4)

After image prompting, we extract the class token cJ and project it into a
common latent space using a linear layer to obtain the fMRI representation x:

x = ImageProj(cJ), x ∈ RC . (5)
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Multi-modal Functional Connectivity: Given the fMRI representation x ∈
RC , text representation y ∈ RC , and brain-region embeddings VJ ∈ RM×CI

.
Since x, y, and HJ have different dimensions, we first use a linear layer to
project VJ as V̄J ∈ RM×C . Then, we compute Pearson correlations between x
and V̄J to obtain the image-modal connectome supplement FI , which provides
the correlations between the global fMRI feature and local brain-region features:

FI = Pearson{x, V̄J}. (6)

Similarly, we compute the text-modal connectome supplement FT to provide
the text-brain region correlations for functional connectivity:

FT = Pearson{y, V̄J}. (7)

Finally, we concatenate FI and FT with the original functional connectivity
F at the node dimension to obtain the multi-modal functional connectivity Fm:

Fm = Concat[F, FI , FT ]. (8)

For existing GNN methods, the multi-modal functional connectivity Fm can
replace F as their inputs. Due to only two extra nodes, Fm has almost no in-
creasing computations. In this work, we use a standard GNN as an adapter to
process Fm for brain analysis, which consists of two graph convolutional layers
and a linear layer. Specifically, we first construct a graph G = {V, E ,A}, where
V denotes the graph nodes, is Fm. The edge E and adjacency matrix A encode
the correlations between nodes. The predicted result is obtained by:

H(1) = σ(D̃− 1
2 ÃD̃ 1

2VW(1)), H(2) = Proj(σ(D̃− 1
2 ÃD̃ 1

2H(1)W(2))), (9)

where Ã = A+I, I is the identity matrix, D̃ is the degree matrix, W is the graph
convolution weights, and σ is the activation function.

2.3 Model Optimization

In this work, we adopt the contrastive loss Lcon and task loss Ltask to jointly
optimize the proposed fTSPL pipeline. The former aligns fMRI and text rep-
resentations x and y, and the latter can be the cross-entropy loss for disease
classification, or the L2 loss for cognitive prediction. The total loss function is:

L = αLcon + βLtask, (10)

where α and β are the loss weights. It is worth noting that only the multi-modal
prompts, two linear layers, and GNN are optimized in the training.

3 Experiments

3.1 Experimental Setup

Datasets: We evaluate the effectiveness of the proposed fTSPL pipeline on the
ABIDE [3] and HCP [23] datasets. The former corresponds to autism classifica-
tion, and the latter involves cognitive prediction.
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Table 1. Quantitative results of the proposed pipeline and state-of-the-art methods
on ABIDE and HCP datasets. The best performance is highlighted in boldface.

Classification Methods Accuracy AUROC Sensitivity Specificity
BrainGNN (MedIA21) [14] 62.7±3.7 59.6±2.5 56.8±20.7 70.2±19.3

BrainGB (TMI22) [2] 69.4±3.4 63.2±2.0 63.5±8.6 60.7±10.4
BNT (NeurIPS22) [11] 71.0±1.2 80.2±1.0 72.5±5.2 69.3±6.5

Com-BrainTF (MICCAI23) [1] 72.5±4.4 79.6±3.8 80.1±5.8 65.7±6.4
Ours 75.4±2.7 82.5±2.4 81.9±4.1 74.1±4.9

Prediction Methods MAE MSE PCC R2

BrainGNN (MedIA21) [14] 0.170±0.004 0.047±0.145 0.195±0.006 0.040±0.004
BrainGB (TMI22) [2] 0.168±0.003 0.044±0.202 0.223±0.004 0.045±0.007
RegGNN (BIB22) [8] 0.164±0.005 0.040±0.124 0.280±0.002 0.057±0.005

Meta-RegGNN (PRIME22) [9] 0.161±0.004 0.038±0.168 0.304±0.003 0.066±0.004
Ours 0.156±0.003 0.035±0.157 0.369±0.004 0.101±0.003

ABIDE Dataset: This dataset contains 1035 subjects’ fMRI data. Accord-
ing to AAL atlas, we produce fMRI time-series and functional connectivities,
which have two classes: autism or non-autism. To improve reliability, we evenly
split this dataset into five subsets for 5-fold cross-validation. Each fold uses 1
subset for test and the other 4 for training, each subset containing 207 subjects.

HCP Dataset: This dataset collects 870 subjects’ fMRI data, we also per-
form AAL atlas to produce fMRI time-series and functional connectivities. Then,
we choose a representative task that predicting the cognitive score of "ReadEng".
We define 174 subjects as a subset to achieve 5-fold cross-validation.

Evaluations: For classification tasks, we adopt the Accuracy, AUROC, Sensi-
tivity, and Specificity as evaluation metrics. The higher the values of these met-
rics, the better the performance. To further quantify prediction performance, we
introduce the Mean Absolute Error (MAE), Mean Squared Error (MSE), Pearson
Correlation Coefficient (PCC), and R-squared (R2) as evaluation metrics. The
lower MAE and MSE values, and the higher PCC and R2 values indicate com-
petitive results. After that, we compare the proposed fTSPL pipeline with some
state-of-the-art brain analysis methods, including BrainGNN [14], BrainGB [2],
BNT [11], Com-BrainTF [1], RegGNN [8], and Meta-RegGNN [9].

Implementation Details: Our pipeline is implemented by PyTorch 1.18.0 [17]
and NVIDIA 4090 GPU. For classification tasks, we use the SGD optimizer [22]
with 5×10−4 learning rate, 1×10−4 weight decay, 16 batch size, and 50 epochs.
The loss weights are α=0.5 and β=0.5. For prediction tasks, we use the SGD
optimizer with 1× 10−3 learning rate, 1× 10−4 weight decay, 32 batch size, and
50 epochs. The loss weights are α=0.2 and β=0.8. For multi-modal prompts, we
set the depth K=4 and the length D=2. In addition, we set λ=0.6 in Ha.
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Fig. 3. Illustration of the activated brain regions and corresponding brain-region texts.

Table 2. Ablation study and hyperparameters analysis on ABIDE and HCP datasets.

Variants Accuracy PCC
w/o Text-modal Connectome Supplement 73.9±2.8 0.348±0.005
w/o Image-modal Connectome Supplement 72.4±2.5 0.322±0.006
w/o Multi-modal Connectome Supplement 70.5±3.2 0.306±0.004
Prompt Depth = 2, Prompts Length = 2 73.6±3.1 0.345±0.005
Prompt Depth = 4, Prompts Length = 2 75.4±2.7 0.369±0.004
Prompt Depth = 8, Prompts Length = 2 74.2±3.0 0.364±0.004
Prompt Depth = 4, Prompts Length = 4 73.8±2.5 0.350±0.005
Prompt Depth = 4, Prompts Length = 8 72.9±2.9 0.332±0.003

3.2 Experimental Results

Comparison with State-of-the-arts Methods: The quantitative results are
illustrated in Table 1. We find that the proposed fTSPL achieves 75.4% Accuracy,
82.5% AUROC, 81.9% Sensitivity, and 74.1% Specificity, as well as 0.156 MAE,
0.035 MSE, 0.369 PCC, and 0.101 R2, which show that our pipeline outperforms
existing GNN methods by a significant margin. Compared with advanced Trans-
former methods, our pipeline not only has lower training costs, but also achieves
slightly better performance of 2.3% and 2.9% AUROC improvements.

Ablation Study: Next, we conduct ablation studies to verify the effectiveness
of PMFCC. As shown in Table 2, we ablate text-modal, image-modal, and multi-
modal connectome supplements in the multi-modal functional connectivity, re-
spectively. We observe that removing the multi-modal connectome supplement
reduces performance by 4.9% in Accuracy and 0.063 in PCC. Moreover, image-
modal connectome supplement is more important than that of the text-modal,
as it brings performance improvements of 3.4% Accuracy and 0.038 PCC. These
results demonstrate that PMFCC is effective to improve brain analysis tasks.

Hyperparameters Analysis: In Table 2, we also analyze hyperparameters,
including the depth and length of multi-modal prompts. It can be seen that the
highest performance of 75.4% Accuracy and 0.369 PCC is achieved when the
prompt depth and length are 4 and 2. Furthermore, insufficient prompt depth
leads to a significant performance decline. In contrast, too large prompt length
fails to improve performance, and even obtaining relatively poor results.
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Text Generation: Fig. 3 visualizes the activated brain regions and correspond-
ing brain-region texts of two patients’ fMRI. These results illustrate that the
proposed ABTG can generate accurate text descriptions for different fMRI.

4 Conclusion

In this paper, we propose a novel pipeline fTSPL for enhancing brain analysis.
Concretely, fTSPL comprehensively considers the connectivity and activity of
brain regions to generate instance-level texts to describe fMRI, and leverages
the pre-trained V-L model and multi-modal prompts to construct the multi-
modal functional connectivity. Experiments demonstrate that the proposed fT-
SPL pipeline achieves promising performance on multiple brain analysis tasks.
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