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Abstract. Functional MRI is capable of assessing an individual’s cogni-
tive ability by blood oxygen level dependence. Due to the complexity of
brain function, exploring the relationship between cognitive ability and
brain functional connectivity is extremely challenging. Recently, graph
neural networks have been employed to extract functional connectiv-
ity features for predicting cognitive scores. Nevertheless, these methods
have two main limitations: 1) Ignore the hierarchical nature of brain:
discarding fine-grained information within each brain region, and over-
looking supplementary information on the functional hierarchy of the
brain at multiple scales; 2) Ignore the small-world nature of brain: cur-
rent methods for generating functional connectivity produce regular net-
works with relatively low information transmission efficiency. To address
these issues, we propose a Hierarchical Graph Learning with Small-World
Brain Connectomes (SW-HGL) framework for cognitive prediction. This
framework consists of three modules: the pyramid information extraction
module (PIE), the small-world brain connectomes construction module
(SW-BCC), and the hierarchical graph learning module (HGL). Specifi-
cally, PIE identifies representative vertices at both micro-scale (commu-
nity level) and macro-scale (region level) through community clustering
and graph pooling. SW-BCC simulates the small-world nature of brain by
rewiring regular networks and establishes functional connections at both
region and community levels. MSFEF is a dual-branch network used to
extract and fuse micro-scale and macro-scale features for cognitive score
prediction. Compared to state-of-the-art methods, our SW-HGL consis-
tently achieves outstanding performance on HCP dataset. The code is
available at https://github.com/CUHK-AIM-Group/SW-HGL.

Keywords: Cognitive score prediction · Hierarchical graph · Small-
world brain connectomes.

1 Introduction

Cognitive scores serve as indicators of intellectual ability and are strongly as-
sociated with health and mortality rates [4, 20]. Understanding the impact of
brain connectomes on cognitive scores is crucial for unraveling the complexities
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Fig. 1. Illustration of the cognitive scores prediction. (a) Previous works use regular
graph structures to predict cognitive scores at a single scale. (b) The proposed SW-
HGL introduces a hierarchical graph learning with small-world brain connectomes for
cognitive prediction

of human brain. Consequently, a considerable amount of research has focused
on exploring the relationship between brain connectomes and cognitive abili-
ties [3, 8, 11, 15, 17, 23]. Recently, researchers have introduced graph neural net-
work (GNN) to leverage the topological characteristics of brain connectomes, en-
abling the extraction of connection features between cortical regions [5,9,13,22].

Despite promising initial results, accurate prediction of individual-level cog-
nitive faces two main challenges (Fig. 1(a)): 1) Neglect of the hierarchical
characteristics: Current methods only extract functional connectivity between
the average levels of different regions, discarding fine-grained information within
each region. In fact, functional connectivity exists not only on a macroscopic
scale but also on a microscopic scale [7]. Hierarchical functional connectivity
can provide complementary topological information about the brain and help
improve the learning performance of models. 2) Neglect of the small-world
nature: Current methods only consider local connections to generate regular
brain connectomes [5, 13, 22]. Compared with small-world networks, the infor-
mation transfer efficiency of regular networks is relatively low. The reason for
choosing to build a small-world network is because it can process and transmit
information quickly, which is similar to the brain’s high-level cognitive func-
tions. If we consider generating brain connectomes with small-world properties,
the graph learning model can transmit and process information more rapidly.

To address these issues, we propose a novel framework, the Hierarchical
Graph Learning with Small-World Brain Connectomes (SW-HGL), as depicted
in Fig. 1(b). First, to capture pyramid information, we cluster all vertices in
one region into several communities to obtain micro-scale community represen-
tative vertices based on the Louvain algorithm [1]. While macro-scale region
representative vertices are obtained through feed-forward GNN and graph pool-
ing. Then macro-scale and micro-scale features are integrated by a dual-branch
GNN network architecture. Secondly, due to high degree of clustering and short
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path length of small-world brain network allows human to process information
efficiently and integrate information quickly, we propose a small-world brain con-
nectomes construction method to simulate the small-world nature of brain. This
involves using the k-nearest neighbor method to construct a regular network
with high degree of clustering. Then the regular network is rewired to introduce
disordered edges to shorten path length. The rewiring method is used because
it is more in line with the original definition of the small-world network - an
intermediate state between regular networks and random networks.

2 Method

In Fig. 2, we introduce the overall architecture of SW-HGL pipeline. First, given
one preprocessed fMRI subject X, we use pyramid information extraction mod-
ule to extract the region information Xre ∈ RN1×t at the macro-scale and com-
munity information Xcom ∈ RN2×t at micro-scale, where N1 and N2 are the
numbers of the brain region and community, t is the length of time series. Then,
we put Xre and Xcom into small-world brain connectomes construction module
respectively, obtaining the functional connection matrix Gre ∈ RN1×N1 and the
Gcom ∈ RN2×N2 . Finally, we process the hierarchical information extracted ear-
lier to obtain macro-scale features Hre and micro-scale features Hcom. Finally,
Hre and Hcom are connected and input into a fully connected layer to obtain fu-
sion features F , which is put into a fully connected layer for cognition prediction.

2.1 Pyramid information extraction

To exploit hierarchical spatial patterns of brain connectomes [7], we use the Lou-
vain algorithm to discover pyramid structures. First, we calculate the Pearson
correlation coefficient (PCC) matrix P of all vertices in one brain region, and
only retain the top 10% nearest neighbors (KNN) of each vertex [13]. Then, each
vertex is assigned to its community (itself). Subsequently, each vertex is consid-
ered in turn to see whether moving it to a neighbor community would increase
the modularity. The local optimization and community aggregation steps are
then repeated until no further increase in modularity can be achieved.

Given the large number of cortical vertices, calculating the modularity in-
crement by moving isolated vertex i to community com would result in a large
computation. The reason for choosing the Louvain algorithm is that the modu-
larity increment △Q obtained is simple to calculate and the calculation amount
is small. It can be calculated by Eq. (2):
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1
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Fig. 2. Illustration of the cognitive score prediction based on SW-HGL. (a) PIE: Pyra-
mid information extraction. (b) SW-BNC: Small-world brain connectomes construc-
tion. (c) HGL: Hierarchical graph learning.

where E is the sum of edge weights of the graph, ki and comi is the degree
and the community of vertex i, 1[comi=comj ] is indicator function,

∑
in is the

sum of edge weights within community com,
∑

tot is the sum of the weights of
the edges connected to vertexes in community com, si is the sum of the weights
of the edges connected to vertex i, si,in is the sum of the weights of the edges
connecting vertex i to vertexes in community com.

After the community division of each region is obtained, we first extract the
micro-scale information. For each community, we calculate PCC between each
vertex within the community and input P and X into a feed-forward GNN
layer [18] for message propagation. The vertex with the highest degree within
the community is identified as the micro-scale vertex by graph pooling. The
functional time series Xcom of this micro-scale vertex already incorporates the
temporal and structural information of all vertices within the community. We
then acquire the macro-scale information. For all micro-scale vertices within each
region, we calculate the PCC between each micro-scale vertex and input Pcom

and Xcom into a feed-forward GNN layer for vertex message propagation. The
vertex with the highest degree within the brain region is identified as the macro-
scale vertex. The time series Xre of macro-scale vertex already incorporates the
temporal and structural information of all vertices within the region.
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2.2 Small-World brain connectomes construction

As we know, there are a large number of local connections in the human brain
connectomes, but there are also a small number of long-distance connections
in brain connectomes [14]. This small-world nature of brain have an important
impact on human cognitive ability. The high degree of clustering of the brain
connectomes allows the human brain to perform efficient information processing
and learning, while the short path length allows the human brain to quickly
integrate information and make decisions. This efficient information processing
capability is the basis of human advanced cognitive functions.

To simulate the small-world nature of brain, we propose a small-world func-
tional connectivity generation algorithm. Firstly, calculate the PCC between
each vertex on both community and region level. Then use KNN method and re-
tain the top 10 % of connection information for each vertex, to initially construct
the functional connectivity G. The formula is as follows:

G(vi, vj) =

{
1, if j ∈ Neighk(i),
0, if j /∈ Neighk(i),

(3)

where Neighk(vi) is the set of k vertices closest to the vertex i. Secondly, each
edge is randomly reconnected, for any vertex i ∈ V , a connection is randomly
selected to replace its original connection. The selected edge, which connects
vertex i and vertex j (j ∈ V ), is reconnected to another node u (u ∈ V , j ̸= u)
with a probability of p, transforming the original edge (i, j) into the edge (i, j).
When p = 0, the functional connectivity is not reconnected, and the resulting
brain connectomes remain a regular network. When p ̸= 0, all edges will be re-
connected with a probability of p, and as the value of p increases, the small-world
of the network becomes more pronounced. When p = 1, the brain connectomes
transform into a random network.

2.3 Hierarchical graph learning

The hierarchical graph learning consists of two different GNN-based modules,
GNNcom and GNNre, each used to process the micro-scale and macro-scale
information. Both consist of two layers of GNN and one layer of MLP. Following
the idea of neighborhood aggregation and updating, GNN is used to process the
spatial patterns to obtain the representations of vertices through the message
function M (Message) and update function U (Update) after k rounds of the
message propagation mechanism [21]. The message propagation process is as
follows:

mk+1
i =

∑
j∈N(i)

M(hk
i , h

k
j , wij), (4)

hk+1
i = U(hk

i ,m
k+1
i ), (5)

where hk
i and hk+1

i represent the features of vertex i of the k -th and (k + 1)-th
layers, hk

j is the feature of vertex j in the k -th layer, wij is the weight on the edge
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of vertex i and j, mk+1
i is the aggregated feature between vertex i and its neigh-

bor j in the k -th layer. After conducting hierarchical graph learning, we obtained
the features of each subject at two different scales. To fully utilize the potential
complementary information provided by different spatial scales, we designed a
feature fusion module to integrate hierarchical features and used the fused graph
features for prediction tasks. The feature fusion module is represented as:

F = Hf ∥ Hc ∈ R2D, (6)

where ∥ represents the concatenation operation. The hierarchical graph repre-
sentation of each subject is a 2D representation vector, which is then fed into a
fully connected layer for prediction.

2.4 Model Optimization:

To train the model, we use the root mean square error (RMSE) to optimize
the model parameters. We added orthogonal constraints in the vertex feature
matrix to avoid the problem of gradient vanishing or gradient explosion during
the optimization process. The total loss function can be represented as Eq. (7):

Loss = LRMSE + λLF , (7)

LF = ∥ 1

m
FTF − I∥2, (8)

where LRMSE is the RMSE loss function, LF is the orthogonal constraint at
two scales, m = max(FTF ) and λ is the hyperparameter used to balance the
contributions of the two terms in Eq. (7).

3 Experiments and Results

3.1 Experimental setup

Dataset: We validated the SW-HGL on HCP dataset. This dataset includes
900 fMRI scans. After eliminating some invalid subjects, we ultimately used
841 subjects for experiments. Then, We map all data to a common space, the
cortical surface partition of Anatomical Automatic Labeling (AAL) atlas [19].
Further, we follow an established procedure to process the left and right cerebral
cortex only. To quantify the learning behavior cognitive level of subjects, we
used four cognitive scores, namely Visual Episodic Memory (PicSeq), Inhibition
(Flanker), Processing Speed (ProcSpeed), and Vocabulary (ReadEng).

Evaluation: To measure the model performance more objectively, we compared
the cognitive scores and prediction data after denormalization, and then em-
ployed three evaluation metrics: RMSE, mean absolute percentage error (MAPE),
and PCC. The smaller the values of RMSE and MAPE, and the larger the PCC
value, the higher the model performance. In addition, we compared SW-HGL
with several state-of-the-arts: 1) GNN-based fMRI data processing methods, in-
cluding BrainGNN [13], RegGNN [6], Meta-RegGNN [9] and BrainGB [5], 2)
spatial-temporal GNN-based methods ST-SSL [10] and ST-GAT [2].
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Table 1. Comparison with state-of-the-art methods and the ablation studies on HCP
dataset. The best performance is highlighted in bold and the suboptimal performance
is highlighted in underline.

Methods

Metrics Score
Metrics Flanker P icSeq ProcSpeed ReadEng

BrainGNN
RMSE 10.18± 0.98 13.46± 0.73 15.06± 1.29 10.43± 0.61
MAPE 7.33± 0.69 9.97± 0.81 10.31± 0.85 7.54± 0.65
PCC 0.13± 0.15 0.15± 0.04 0.15± 0.02 0.18± 0.10

RegGNN
RMSE 10.22± 0.58 18.55± 3.33 15.61± 0.92 10.83± 0.77
MAPE 7.31± 0.36 12.35± 1.84 11.20± 1.25 7.52± 0.30
PCC 0.13± 0.02 0.18± 0.09 0.15± 0.10 0.26± 0.03

Meta-
RegGNN

RMSE 14.82± 0.80 18.55± 3.33 17.93± 1.35 17.20± 2.89
MAPE 10.81± 0.76 12.35± 1.85 12.84± 1.13 11.70± 2.37
PCC 0.08± 0.7 0.08± 0.09 0.18± 0.10 0.28± 0.05

BrainGB
RMSE 17.05± 1.76 15.97± 0.89 19.01± 4.00 12.18± 1.00
MAPE 11.59± 1.13 10.91± 0.95 13.58± 2.44 8.44± 1.72
PCC 0.15± 0.03 0.18± 0.07 0.14± 0.10 0.21± 0.07

ST-SSL
RMSE 45.57± 32.89 43.96± 31.81 65.02± 25.26 10.75± 0.02
MAPE 30.68± 22.32 6.12± 6.13 27.77± 10.76 7.42± 0.01
PCC 0.17± 0.02 0.15± 0.01 0.10± 0.11 0.14± 0.10

ST-GAT
RMSE 11.54± 2.17 15.45± 2.77 28.26± 8.12 10.73± 0.01
MAPE 7.45± 0.87 10.98± 0.84 17.41± 4.94 7.41± 0.01
PCC 0.15± 0.09 0.07± 0.11 0.15± 0.09 0.13± 0.10

w/o PIE
RMSE 10.02± 0.13 12.90± 0.06 13.71± 0.01 11.76± 0.30
MAPE 7.13± 0.10 9.80± 0.03 8.89± 0.03 8.13± 0.29
PCC 0.22± 0.01 0.20± 0.02 0.18± 0.04 0.24± 0.01

w/o SW-BCC
RMSE 9.72± 0.12 12.82± 0.05 13.74± 0.03 10.30± 0.34
MAPE 6.90± 0.10 9.75± 0.04 8.93± 0.04 6.99± 0.26
PCC 0.24± 0.02 0.25± 0.02 0.18± 0.02 0.35± 0.01

w/o HGL
RMSE 9.71± 0.11 12.96± 0.06 13.82± 0.01 12.28± 0.57
MAPE 6.90± 0.07 9.80± 0.04 9.04± 0.02 8.15± 0.39
PCC 0.25± 0.01 0.25± 0.03 0.18± 0.02 0.28± 0.03

Our
RMSE 9.43± 0.129.43± 0.129.43± 0.12 12.63± 0.0512.63± 0.0512.63± 0.05 13.21± 0.0113.21± 0.0113.21± 0.01 9.85± 0.349.85± 0.349.85± 0.34
MAPE 6.60± 0.086.60± 0.086.60± 0.08 9.64± 0.059.64± 0.059.64± 0.05 8.63± 0.028.63± 0.028.63± 0.02 6.61± 0.266.61± 0.266.61± 0.26
PCC 0.27± 0.010.27± 0.010.27± 0.01 0.28± 0.010.28± 0.010.28± 0.01 0.19± 0.020.19± 0.020.19± 0.02 0.38± 0.010.38± 0.010.38± 0.01

Implementation Details: To train our model, we implemented it through
PyTorch [16] and Adam [12] selected as the optimizer, periodically adjusting the
weight decay learning rate between 1e-2 and 1e-5. The batch size was set to 64,
and the maximum training epoch was set to 500. We set the hyperparameters
p=0.2 to generate the small-world brain connectomes, the macro-scale hidden
layer node feature channel d=32, and the micro-scale hidden layer node feature
channel d=64. We used 650 subjects as the training set, 51 subjects as the valid
set and 130 subjects as the test set. During the testing phase, we report the
average and standard deviation of the results from 10 experiments.
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Fig. 3. Visualize results. (a) Small-World brain connectomes. (b) Sensitivity analysis.

3.2 Experimental Results

Comparison with State-of-the-arts: We listed the comparison results in
Table 1. ST-SSL and ST-GAT have almost the worst performance. Compared
with the fMRI processing method based on GNN, SW-HGL performs the best
in the four cognitive score prediction tasks. Especially for the PCC metric, our
improvements in Flanker, ProcSpeed and ReadEng were around 10%, which
shows that SW-HGL has a stronger fitting ability. And the variance of our 10-
time results is small, which is related to the fact that the brain connectome we
generated is a small-world network. Because small-world networks are highly
robust, even if some nodes or connections are corroded or distorted, the overall
function of the network will not be greatly affected. Then, we select a subject to
construct a small-world brain connectomes, and visualize it in Fig. 3(a). Vertices
are placed sequentially based on their anatomical location in the brain. The dark
blue and orange connections represent short-distance (Distance<75 mm) and
long-distance (Distance>75mm) connections. The results show that the proposed
method can indeed increase the number of long-distance connections.

Ablation Studies: Table 1 presents the ablation study validating the effec-
tiveness of each module in the proposed SW-HGL. Results demonstrate that
pyramid information extraction module enhances the effectiveness of our model,
as evidenced by the removal of it RMSE 10.02 ± 0.13. Introducing small-word
nature improves RMSE by reducing error tolerance, as indicated by removing it
accuracy 9.72± 0.12 . Utilizing hierarchical graph learning improves model per-
formance by considering supplementary information on the functional hierarchy,
as indicated by removing it RMSE 9.71 ± 0.11. Then we conducted sensitivity
experiments by setting the hyperparameter p to different values to study the im-
pact of the degree of small-world nature of the constructed brain connectomes
on model performance. We record the RMSE results in Fig. 3(b). Our research
results show that the highest prediction accuracy can be achieved when p=0.2.
However, setting p too small can lead to insufficient small-worldness of the func-
tional connectivity, causing a slight decline in performance, conversely, setting p
too large results in the overly chaos, leading to a decrease in model performance.
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4 Conclusion

This paper proposes a novel framework SW-HGL for cognitive score prediction.
Specifically, the pyramid information extraction module captures macro-scale
brain region representative vertex information and micro-scale community rep-
resentative vertex information. The small-world brain connectomes construction
module constructs functional connectivity between brain region representative
vertices and between community representative vertices. The hierarchical graph
learning module uses the dual-branch GNN to extract and fuse macro-scale and
micro-scale features to predict cognitive scores. Experimental results demon-
strate the superiority of the proposed model.
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